A250406 Values of B such that p = prime(n) satisfies (p-1)! == -1-B*p (mod p^2), i.e., p is a near-Wilson prime.
1, 2, 0, 2, 10, 0, 12, 17, 15, 11, 12, 30, 25, 30, 41, 19, 32, 5, 55, 2, 62, 6, 63, 19, 27, 29, 46, 106, 79, 18, 56, 12, 81, 72, 55, 65, 6, 55, 146, 67, 131, 109, 32, 158, 50, 81, 38, 43, 114, 98, 64, 132, 45, 37, 80, 190, 148, 101, 252, 4, 119, 62, 36, 52, 25
Offset: 1
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..1000
- E. Costa, R. Gerbicz and D. Harvey, A search for Wilson primes, Math. Comp., 83 (2014), 3071-3091.
- R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449.
Programs
-
Mathematica
f[n_] := Block[{k = 0, m, p = Prime[n]}, m = Mod[(p - 1)!, p^2]; While[ Mod[-1 - k*p, p^2] != m, k++]; k]; Array[f, 70] (* Robert G. Wilson v, Dec 03 2014 *)
-
PARI
forprime(p=1, 1e9, b=0; while(Mod((p-1)!, p^2)!=-1-b*p, b++); print1(b, ", "))
Comments