cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A250407 Near-Wilson primes (p = prime(n) satisfying (p-1)! == -1-A250406(n)*p (mod p^2)) with A250406(n) < 10.

Original entry on oeis.org

2, 3, 5, 7, 13, 61, 71, 79, 157, 281, 563, 1277, 1777, 2339, 6311, 8233, 8543, 11047, 22907, 27689
Offset: 1

Views

Author

Felix Fröhlich, Nov 22 2014

Keywords

Comments

A250406(n) is essentially A007619(n) modulo A000040(n) (see Crandall et al. (1997), p. 442).

Crossrefs

Programs

  • PARI
    forprime(p=1, 1e9, for(b=0, 9, if(Mod((p-1)!, p^2)==-1-b*p, print1(p, ", "); break({1}))))

A258367 a(n) is the smallest A (in absolute value) such that for p = prime(n), 2^{(p-1)/2} == +-1 + A*p (mod p^2), i.e., such that p is a near-Wieferich prime.

Original entry on oeis.org

1, 1, 1, 3, 5, 2, 8, 3, 14, 3, 18, 9, 9, 22, 18, 4, 18, 5, 1, 28, 30, 24, 3, 20, 46, 22, 47, 21, 15, 9, 57, 42, 15, 48, 28, 41, 48, 60, 85, 25, 74, 25, 52, 11, 32, 51, 17, 13, 34, 113, 13, 71, 2, 16, 64, 130, 81, 35, 37, 29, 39, 147, 68, 60, 71, 96, 92, 99, 12
Offset: 2

Views

Author

Felix Fröhlich, May 28 2015

Keywords

Comments

p is in A001220 iff a(n) = 0. This is the case iff A014664(n) = A243905(n), which happens for n = 183 and n = 490.
Is a(n) = 0 for any other n, and, if yes, are there infinitely many such n?

Crossrefs

Programs

  • PARI
    a(n,p=prime(n))=abs(centerlift(Mod(2,p^2)^((p-1)/2))\/p)
    apply(p->a(0,p), primes(100)[2..100]) \\ Charles R Greathouse IV, Jun 15 2015

Formula

a(n) = min(b(n) mod p, -b(n) mod p) where p = prime(n) and b(n) = Sum_{i=1..ceiling((p-1)/4)} (2i-1)^(p-2). - Daniel Chen, Sep 01 2022

A197636 Non-Wilson primes: primes p such that (p-1)! =/= -1 mod p^2.

Original entry on oeis.org

2, 3, 7, 11, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 569
Offset: 1

Views

Author

Jonathan Sondow, Oct 19 2011

Keywords

Comments

All primes except 5, 13, 563, and any other Wilson prime A007540 that may exist.
Same as primes p that do not divide their Wilson quotient ((p-1)!+1)/p.
Wilson's theorem says that (p-1)! == -1 (mod p) if and only if p is prime.
p = prime(i) is a term iff A250406(i) != 0. - Felix Fröhlich, Jan 24 2016
Complement of A007540 in A000040. - Felix Fröhlich, Jan 24 2016

Examples

			2 is a non-Wilson prime since (2-1)! = 1 ==/== -1 (mod 2^2).
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range@ 104, Mod[Factorial[# - 1], #^2] != #^2 - 1 &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    forprime(p=1, 500, if(Mod((p-1)!, p^2)!=-1, print1(p, ", "))) \\ Felix Fröhlich, Jan 24 2016

Formula

((p-1)!+1)/p =/= 0 (mod p), where p is prime.

A260209 Values A such that p=prime(n) satisfies binomial(2p-1, p-1) == 1 + A*p (mod p^4).

Original entry on oeis.org

1, 3, 25, 245, 121, 169, 867, 3249, 6877, 9251, 961, 15059, 57154, 61017, 68479, 106742, 201898, 208376, 107736, 176435, 330398, 237158, 158447, 213867, 903264, 856884, 21218, 755634, 1259386, 944906, 161290, 531991, 150152, 656914, 1287658, 592826, 640874
Offset: 1

Views

Author

Felix Fröhlich, Jul 19 2015

Keywords

Comments

p is a Wolstenholme prime (A088164) iff a(n) == 0. This holds for n = 1944 and n = 157504.
When performing a search for Wolstenholme primes, one can choose an integer constant c >= 0 and record all primes p with A <= c in order to get a larger data set.
The values here asymptotically appear to grow more quickly than those in A260210.
It appears that a(n)/A260210(n) = A001248(n) for all n.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@ n}, (Mod[ Binomial[2p - 1, p - 1], p^4] - 1)/p]; Array[f, 37] (* Robert G. Wilson v, Jul 29 2015 *)
  • PARI
    a(n) = p=prime(n); (lift(Mod(binomial(2*p-1, p-1), p^4))-1)/p

A260210 A034602(n) modulo prime(n).

Original entry on oeis.org

1, 5, 1, 1, 3, 9, 13, 11, 1, 11, 34, 33, 31, 38, 58, 56, 24, 35, 62, 38, 23, 27, 96, 84, 2, 66, 106, 74, 10, 31, 8, 34, 58, 26, 26, 144, 150, 140, 167, 137, 31, 107, 78, 157, 1, 103, 165, 97, 111, 60, 196, 48, 97, 259, 155, 175, 244, 13, 269, 34, 184, 222, 54
Offset: 3

Views

Author

Felix Fröhlich, Jul 19 2015

Keywords

Comments

p is a Wolstenholme prime (A088164) iff a(n) = 0. This holds for n = 1944 and n = 157504.
When performing a search for Wolstenholme primes, one can choose an integer constant c >= 0 and record all primes with a(n) <= c in order to get a larger data set.
The values here appear to have a nicer asymptotic growth behavior than those in A260209.
It appears that A260209(n)/a(n) = A001248(n).
The formula only returns integers for primes greater than 3. - Robert G. Wilson v, Jul 29 2015

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@ n}, (Mod[ Binomial[2p - 1, p - 1], p^4] - 1)/p^3]; Array[f, 60, 3] (* Robert G. Wilson v, Jul 29 2015 *)
  • PARI
    a(n) = p=prime(n); lift(Mod(binomial(2*p-1, p-1)\p^3, p))

Formula

A034602(n)/prime(n) = A260209(n)/prime(n)^2, for n>2. - Robert G. Wilson v, Jul 29 2015

A338558 Absolute value q such that tau(p) == q (mod p), where p = prime(n) and tau(i) = A000594(i).

Original entry on oeis.org

0, 0, 0, 0, 1, 5, 7, 7, 1, 5, 10, 6, 11, 12, 20, 24, 14, 12, 3, 19, 6, 37, 20, 33, 20, 27, 50, 34, 36, 29, 18, 64, 4, 2, 66, 32, 3, 64, 61, 51, 60, 84, 95, 83, 63, 97, 42, 28, 61, 67, 32, 10, 29, 73, 37, 92, 16, 120, 31, 107, 120, 141, 145, 39, 12, 74, 150
Offset: 1

Views

Author

Felix Fröhlich, Dec 21 2020

Keywords

Comments

These are essentially the values that can be used to define "near-misses" in a search of terms for A007659, similar to how "near-Wieferich primes", "near-Wilson primes" and "near-Wall-Sun-Sun primes" are defined in searches for Wieferich primes (A001220), Wilson primes (A007540) and Wall-Sun-Sun (Fibonacci-Wieferich) primes.

Crossrefs

A-values: A258367 (near-Wieferich), A250406 (near-Wilson), A244801 and A241014 (near-Wall-Sun-Sun), A260209 and A260210 (near-Wolstenholme).

Programs

  • Mathematica
    a[n_] := Module[{p = Prime[n]}, Min[Abs[Mod[RamanujanTau[p], {-p, p}]]]]; Array[a, 100] (* Amiram Eldar, Jan 10 2025 *)
  • PARI
    a(n) = my(p=prime(n)); abs(centerlift(Mod(ramanujantau(p), p)))

Formula

a(n) = 0 iff prime(n) is a term of A007659.

A352858 a(n) = abs(E_{p-3} (mod p)) for p = prime(n), where E_i is the i-th Euler number (A000364).

Original entry on oeis.org

1, 2, 1, 3, 8, 7, 1, 3, 9, 4, 4, 4, 14, 7, 12, 16, 25, 22, 25, 4, 23, 33, 42, 15, 46, 18, 23, 38, 58, 2, 6, 55, 0, 37, 74, 63, 10, 61, 21, 38, 92, 89, 70, 79, 69, 59, 85, 22, 27, 69, 0, 45, 58, 96, 106, 6, 50, 28, 91, 133, 46, 147, 133, 38, 29, 128, 167, 116
Offset: 3

Views

Author

Felix Fröhlich, Apr 06 2022

Keywords

Comments

a(n) = 0 iff p is a term of A198245.
These are the absolute values of the "A-values" that can be used to define "near-misses" in a search for terms of A198245 (cf. Mestrovic, 2014).

Crossrefs

A-values: A258367 (near-Wieferich), A250406 (near-Wilson), A244801 and A241014 (near-Wall-Sun-Sun), A260209 and A260210 (near-Wolstenholme), A338558 (near-misses for A007659).

Programs

  • PARI
    eulmod(n) = abs(centerlift(Mod(eulerfrac(n-3), n)))
    a(n) = my(p=prime(n)); eulmod(p)
Showing 1-7 of 7 results.