cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A250886 G.f. A(x) satisfies: x = A(x) * (1 + A(x)) * (1 - 2*A(x)).

Original entry on oeis.org

1, 1, 4, 15, 68, 322, 1608, 8283, 43780, 235950, 1291992, 7167030, 40192488, 227488900, 1297845008, 7455558675, 43088726148, 250362137590, 1461641062200, 8569690323810, 50438119336440, 297896152159260, 1765010252344560, 10487875429825950, 62485899131628648, 373198022044163532
Offset: 1

Views

Author

Paul D. Hanna, Nov 28 2014

Keywords

Examples

			G.f.: A(x) = x + x^2 + 4*x^3 + 15*x^4 + 68*x^5 + 322*x^6 + 1608*x^7 + ...
Related expansions.
A(x)^2 = x^2 + 2*x^3 + 9*x^4 + 38*x^5 + 182*x^6 + 900*x^7 + 4629*x^8 + ...
A(x)^3 = x^3 + 3*x^4 + 15*x^5 + 70*x^6 + 354*x^7 + 1827*x^8 + 9691*x^9 + ...
where x = A(x) - A(x)^2 - 2*A(x)^3.
		

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - x^2 - 2*x^3 + x^2*O(x^n)), n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f.: Series_Reversion(x - x^2 - 2*x^3).
G.f. A(x) satisfies: x = -3*(1+A(x)) + 5*(1+A(x))^2 - 2*(1+A(x))^3.
a(n) ~ 2^(n - 3/2) * (10 + 7*sqrt(7))^(n - 1/2) / (7^(1/4) * sqrt(Pi) * n^(3/2) * 3^(2*n - 1)). - Vaclav Kotesovec, Aug 22 2017