cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A276310 G.f. A(x) satisfies: x = A(x)-2*A(x)^2-2*A(x)^3.

Original entry on oeis.org

1, 2, 10, 60, 404, 2912, 21984, 171600, 1373680, 11215776, 93039648, 781936896, 6643741440, 56973685760, 492482782208, 4286561051904, 37536888622848, 330471001126400, 2923338431270400, 25970490200202240, 231607762146309120, 2072719382680535040
Offset: 1

Views

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 404*x^5 + 2912*x^6 + 21984*x^7 +...
Related expansions.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1148*x^6 + 8640*x^7 + 67296*x^8 +...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2352*x^7 + 18504*x^8 +...
where x = A(x) - 2*A(x)^2 - 2*A(x)^3.
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 2*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 2*x^2 - 2*x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x - 2*x^2 - 2*x^3).
Conjecture: 3*n*(n-1)*a(n) -13*(n-1)*(2*n-3)*a(n-1) -3*(3*n-5)*(3*n-7)*a(n-2)=0. - R. J. Mathar, Sep 17 2016
a(n) ~ (13 + 5*sqrt(10))^(n - 1/2) / (2^(5/4) * 5^(1/4) * sqrt(Pi) * n^(3/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017

A276314 G.f. A(x) satisfies: x = A(x)-A(x)^2-3*A(x)^3.

Original entry on oeis.org

1, 1, 5, 20, 104, 546, 3066, 17655, 104555, 630773, 3867617, 24020932, 150827740, 955808680, 6105327912, 39268000188, 254093573088, 1652984379150, 10804631902350, 70925539707330, 467373389649870, 3090558380977020, 20501504119375500, 136392970090612950
Offset: 1

Views

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x+x^2+5*x^3+20*x^4+104*x^5+546*x^6+3066*x^7+... Related Expansions:
A(x)^2=x^2+2*x^3+11*x^4+50*x^5+273*x^6+1500*x^7+8664*x^8+...
A(x)^3=x^3+3*x^4+18*x^5+91*x^6+522*x^7+2997*x^8+17831*x^9+...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - x^2 - 3*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - x^2 - 3*x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x-x^2-3*x^3)
Conjecture: +169*n*(n+2)*(n-1)*a(n) +13*(n-1) *(13*n^2+26*n-220) *a(n-1) +(-7277*n^3+13423*n^2+43814*n-81700) *a(n-2) -27*(3*n-10) *(3*n-8) *(71*n+197)*a(n-3)=0. - R. J. Mathar, Sep 17 2016
a(n) ~ (29 + 20*sqrt(10))^(n - 1/2) / (2^(5/4) * 5^(1/4) * sqrt(Pi) * n^(3/2) * 13^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017

A276315 G.f. A(x) satisfies: x = A(x)-3*A(x)^2-2*A(x)^3.

Original entry on oeis.org

1, 3, 20, 165, 1524, 15078, 156264, 1674585, 18404980, 206325834, 2350049208, 27118926354, 316381296840, 3725407768140, 44217602683728, 528470024711841, 6354463541900148, 76818345766932450, 933089010748085400, 11382500895815005110, 139387948563917844120
Offset: 1

Views

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x+3*x^2+20*x^3+165*x^4+1524*x^5+15078*x^6+156264*x^7+...
Related Expansions:
A(x)^2 = x^2+6*x^3+49*x^4+450*x^5+4438*x^6+45900*x^7+491181*x^8+...
A(x)^3 = x^3+9*x^4+87*x^5+882*x^6+9282*x^7+100521*x^8+1113299*x^9+...
		

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 3*x^2 - 2*x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x-3*x^2-2*x^3).
a(n) ~ (6*(18 + 5*sqrt(15))/17)^(n - 1/2) / (2*15^(1/4)*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 22 2017

A276316 G.f. A(x) satisfies: x = A(x)-4*A(x)^2+A(x)^3.

Original entry on oeis.org

1, 4, 31, 300, 3251, 37744, 459060, 5773548, 74474455, 979872036, 13099102575, 177414673488, 2429310288468, 33574008073120, 467717206216760, 6560977611629676, 92595131510426943, 1313820730347196300, 18730821529411507725, 268185082351558093260
Offset: 1

Views

Author

Tom Richardson, Aug 29 2016

Keywords

Examples

			G.f.: A(x) = x+4*x^2+31*x^3+300*x^4+3251*x^5+37744*x^6+459060*x^7+...
Related Expansions:
A(x)^2 = x^2+8*x^3+78*x^4+848*x^5+9863*x^6+120096*x^7+1511634*x^8+...
A(x)^3 = x^3+12*x^4+141*x^5+1708*x^6+21324*x^7+272988*x^8+3566761*x^9+...
		

Crossrefs

Programs

  • Maple
    S:= series(RootOf(x-4*x^2+x^3-t,x),t,100):
    seq(coeff(S,t,j),j=1..100); # Robert Israel, Sep 02 2016
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
  • PARI
    {a(n)=polcoeff(serreverse(x - 4*x^2 + x^3 + x^2*O(x^n)), n)}
    for(n=1, 30, print1(a(n), ", "))

Formula

G.f.: Series_Reversion(x-4*x^2+x^3).
From Robert Israel, Sep 02 2016: (Start)
G.f. g(x) satisfies the differential equation
(12-184*t-27*t^2)*g''(t) - (92+27*t)*g'(t) + 3*g(t) = 4.
(-27*n^2+3)*a(n)+(-184*n^2-276*n-92)*a(n+1)+(12*n^2+36*n+24)*a(n+2) = 0
for n >= 1. (End)
a(n) ~ (46 + 13*sqrt(13))^(n - 1/2) / (13^(1/4) * sqrt(Pi) * n^(3/2) * 2^(n + 1/2) * 3^(n - 1/2)). - Vaclav Kotesovec, Aug 22 2017

A371395 Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0

Views

Author

F. Chapoton, Mar 21 2024

Keywords

Comments

The terms can be seen as graded dimensions of a non-symmetric operad. The Koszul dual operad has Hilbert series x*(1 + x)*(1 + tx). So the current table has as Hilbert series the reverse of x*(1-x)*(1-t*x) w.r.t to x (see Sage below).
The triangle is symmetric under the exchange of k with n - k.

Examples

			Triangle begins:
  [0] [ 1],
  [1] [ 1,   1],
  [2] [ 2,   3,   2],
  [3] [ 5,  10,  10,   5],
  [4] [14,  35,  45,  35,  14],
  [5] [42, 126, 196, 196, 126, 42].
		

Crossrefs

Column 0 and main diagonal are A000108.
Column 1 and subdiagonal are A001700.
Row sums are A006013.
The even bisection of the alternating row sums is A001764.
The central terms are A188681.

Programs

  • Maple
    T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..7);  # Peter Luschny, Mar 21 2024
  • Mathematica
    T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
    (* Peter Luschny, Mar 21 2024 *)
  • SageMath
    def Trow(n):
        return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
    
  • SageMath
    # As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
    t = polygen(QQ, 't')
    x = LazyPowerSeriesRing(t.parent(), 'x').0
    gf = x*(1-x)*(1-t*x)
    coeffs = gf.revert() / x
    for n in range(6):
        print(coeffs[n].list())

Formula

From Peter Luschny, Mar 21 2024: (Start)
T(n, k) = hypergeom([-n, -k], [1], 1)*hypergeom([-n, k - n], [1], 1)/(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A085614(n + 1).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A250886(n + 1). (End)
Showing 1-5 of 5 results.