A276310
G.f. A(x) satisfies: x = A(x)-2*A(x)^2-2*A(x)^3.
Original entry on oeis.org
1, 2, 10, 60, 404, 2912, 21984, 171600, 1373680, 11215776, 93039648, 781936896, 6643741440, 56973685760, 492482782208, 4286561051904, 37536888622848, 330471001126400, 2923338431270400, 25970490200202240, 231607762146309120, 2072719382680535040
Offset: 1
G.f.: A(x) = x + 2*x^2 + 10*x^3 + 60*x^4 + 404*x^5 + 2912*x^6 + 21984*x^7 +...
Related expansions.
A(x)^2 = x^2 + 4*x^3 + 24*x^4 + 160*x^5 + 1148*x^6 + 8640*x^7 + 67296*x^8 +...
A(x)^3 = x^3 + 6*x^4 + 42*x^5 + 308*x^6 + 2352*x^7 + 18504*x^8 +...
where x = A(x) - 2*A(x)^2 - 2*A(x)^3.
-
Rest[CoefficientList[InverseSeries[Series[x - 2*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - 2*x^2 - 2*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A276314
G.f. A(x) satisfies: x = A(x)-A(x)^2-3*A(x)^3.
Original entry on oeis.org
1, 1, 5, 20, 104, 546, 3066, 17655, 104555, 630773, 3867617, 24020932, 150827740, 955808680, 6105327912, 39268000188, 254093573088, 1652984379150, 10804631902350, 70925539707330, 467373389649870, 3090558380977020, 20501504119375500, 136392970090612950
Offset: 1
G.f.: A(x) = x+x^2+5*x^3+20*x^4+104*x^5+546*x^6+3066*x^7+... Related Expansions:
A(x)^2=x^2+2*x^3+11*x^4+50*x^5+273*x^6+1500*x^7+8664*x^8+...
A(x)^3=x^3+3*x^4+18*x^5+91*x^6+522*x^7+2997*x^8+17831*x^9+...
-
Rest[CoefficientList[InverseSeries[Series[x - x^2 - 3*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - x^2 - 3*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A276315
G.f. A(x) satisfies: x = A(x)-3*A(x)^2-2*A(x)^3.
Original entry on oeis.org
1, 3, 20, 165, 1524, 15078, 156264, 1674585, 18404980, 206325834, 2350049208, 27118926354, 316381296840, 3725407768140, 44217602683728, 528470024711841, 6354463541900148, 76818345766932450, 933089010748085400, 11382500895815005110, 139387948563917844120
Offset: 1
G.f.: A(x) = x+3*x^2+20*x^3+165*x^4+1524*x^5+15078*x^6+156264*x^7+...
Related Expansions:
A(x)^2 = x^2+6*x^3+49*x^4+450*x^5+4438*x^6+45900*x^7+491181*x^8+...
A(x)^3 = x^3+9*x^4+87*x^5+882*x^6+9282*x^7+100521*x^8+1113299*x^9+...
-
Rest[CoefficientList[InverseSeries[Series[x - 3*x^2 - 2*x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - 3*x^2 - 2*x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A276316
G.f. A(x) satisfies: x = A(x)-4*A(x)^2+A(x)^3.
Original entry on oeis.org
1, 4, 31, 300, 3251, 37744, 459060, 5773548, 74474455, 979872036, 13099102575, 177414673488, 2429310288468, 33574008073120, 467717206216760, 6560977611629676, 92595131510426943, 1313820730347196300, 18730821529411507725, 268185082351558093260
Offset: 1
G.f.: A(x) = x+4*x^2+31*x^3+300*x^4+3251*x^5+37744*x^6+459060*x^7+...
Related Expansions:
A(x)^2 = x^2+8*x^3+78*x^4+848*x^5+9863*x^6+120096*x^7+1511634*x^8+...
A(x)^3 = x^3+12*x^4+141*x^5+1708*x^6+21324*x^7+272988*x^8+3566761*x^9+...
-
S:= series(RootOf(x-4*x^2+x^3-t,x),t,100):
seq(coeff(S,t,j),j=1..100); # Robert Israel, Sep 02 2016
-
Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + x^3, {x, 0, 20}], x],x]] (* Vaclav Kotesovec, Aug 22 2017 *)
-
{a(n)=polcoeff(serreverse(x - 4*x^2 + x^3 + x^2*O(x^n)), n)}
for(n=1, 30, print1(a(n), ", "))
A371395
Triangle read by rows: T(n, k) = binomial(n + k, k) * binomial(2*n - k, n - k) / (n + 1).
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 10, 10, 5, 14, 35, 45, 35, 14, 42, 126, 196, 196, 126, 42, 132, 462, 840, 1008, 840, 462, 132, 429, 1716, 3564, 4950, 4950, 3564, 1716, 429, 1430, 6435, 15015, 23595, 27225, 23595, 15015, 6435, 1430
Offset: 0
Triangle begins:
[0] [ 1],
[1] [ 1, 1],
[2] [ 2, 3, 2],
[3] [ 5, 10, 10, 5],
[4] [14, 35, 45, 35, 14],
[5] [42, 126, 196, 196, 126, 42].
Column 0 and main diagonal are
A000108.
Column 1 and subdiagonal are
A001700.
The even bisection of the alternating row sums is
A001764.
-
T := (n, k) -> binomial(n + k, k)*binomial(2*n - k, n)/(n + 1):
seq(print(seq(T(n, k), k = 0..n)), n = 0..7); # Peter Luschny, Mar 21 2024
-
T[n_, k_] := (Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, k - n, 1, 1]) /(n + 1); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten
(* Peter Luschny, Mar 21 2024 *)
-
def Trow(n):
return [binomial(n+k, k) * binomial(2*n-k, n-k) / (n+1) for k in range(n+1)]
-
# As the reverse of x*(1-x)*(1-t*x) w.r.t variable x.
t = polygen(QQ, 't')
x = LazyPowerSeriesRing(t.parent(), 'x').0
gf = x*(1-x)*(1-t*x)
coeffs = gf.revert() / x
for n in range(6):
print(coeffs[n].list())
Showing 1-5 of 5 results.
Comments