A098548 a(n) = n if n <= 3, otherwise the smallest number > a(n-1) having at least one common factor with a(n-2) but none with a(n-1).
1, 2, 3, 4, 9, 10, 21, 22, 27, 28, 33, 34, 39, 40, 51, 52, 57, 58, 63, 64, 69, 70, 81, 82, 87, 88, 93, 94, 99, 100, 111, 112, 117, 118, 123, 124, 129, 130, 141, 142, 147, 148, 153, 154, 159, 160, 171, 172, 177, 178, 183, 184, 189, 190, 201, 202, 207, 208, 213, 214
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7.
- Reinhard Zumkeller, Table of n, a(n) for n = 1..100000
Crossrefs
Programs
-
Haskell
a098548 n = a098548_list !! (n-1) a098548_list = 1 : 2 : 3 : f 2 3 [4..] where f u v (w:ws) = if gcd u w > 1 && gcd v w == 1 then w : f v w ws else f u v ws -- Reinhard Zumkeller, Nov 21 2014
-
Maple
x2 := 0: for n from 1 to 1000 do x := x2 + 1: while (n >= 4 and (gcd(x,x2) > 1 or gcd(x,x1) = 1)) do x := x + 1: end do; print (n, x); x1 := x2: x2 := x: end do: # David Applegate, Nov 26 2014
-
Mathematica
a := {1, 2, 3}; For[n = 4, n <= 1000, n++, If[GCD[n, a[[-1]]] == 1 && GCD[n, a[[-2]]] > 1, AppendTo[a, n]]]; a (* L. Edson Jeffery, Dec 04 2014 *)
Comments