cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A098548 a(n) = n if n <= 3, otherwise the smallest number > a(n-1) having at least one common factor with a(n-2) but none with a(n-1).

Original entry on oeis.org

1, 2, 3, 4, 9, 10, 21, 22, 27, 28, 33, 34, 39, 40, 51, 52, 57, 58, 63, 64, 69, 70, 81, 82, 87, 88, 93, 94, 99, 100, 111, 112, 117, 118, 123, 124, 129, 130, 141, 142, 147, 148, 153, 154, 159, 160, 171, 172, 177, 178, 183, 184, 189, 190, 201, 202, 207, 208, 213, 214
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Comments

The number a(n) is even if and only if n is even. If n>=1, then a(2n) = a(2n-1) + 1. If n>=2, then a(2n+1) - a(2n) >= 5. As a consequence, if n>=15, then a(n) > 3n. - Benoit Jubin, Dec 07 2014
A098549(n) = a(a(n)).

Crossrefs

Cf. A158478 (smallest prime factor), A251104 (largest prime factor), A251139 (number of distinct prime factors), A251141 (total number of prime factors), A251046 (squarefree part), A251090 (squarefree kernel).
Cf. also A251535 and A251536 (bisections), A251537, A251538, A251539 (jumps), A251540.

Programs

  • Haskell
    a098548 n = a098548_list !! (n-1)
    a098548_list = 1 : 2 : 3 : f 2 3 [4..] where
       f u v (w:ws) = if gcd u w > 1 && gcd v w == 1
                         then w : f v w ws else f u v ws
    -- Reinhard Zumkeller, Nov 21 2014
  • Maple
    x2 := 0: for n from 1 to 1000 do x := x2 + 1: while (n >= 4 and (gcd(x,x2) > 1 or gcd(x,x1) = 1)) do x := x + 1: end do; print (n, x); x1 := x2: x2 := x: end do: # David Applegate, Nov 26 2014
  • Mathematica
    a := {1, 2, 3}; For[n = 4, n <= 1000, n++, If[GCD[n, a[[-1]]] == 1 && GCD[n, a[[-2]]] > 1, AppendTo[a, n]]]; a (* L. Edson Jeffery, Dec 04 2014 *)

A251539 First differences of A251538.

Original entry on oeis.org

4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2014

Keywords

Comments

I would very much like to have a formula or recurrence for this sequence.

Crossrefs

Cf. A251767 (duplicates removed), A251768 (run lengths).

Programs

A251536 A098548(2n)/2.

Original entry on oeis.org

1, 2, 5, 11, 14, 17, 20, 26, 29, 32, 35, 41, 44, 47, 50, 56, 59, 62, 65, 71, 74, 77, 80, 86, 89, 92, 95, 101, 104, 107, 110, 119, 122, 125, 131, 134, 137, 140, 146, 149, 152, 155, 161, 164, 167, 170, 176, 179, 182, 185, 191
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2014

Keywords

Comments

Equals (A251535(n)+1)/2.

Crossrefs

Programs

  • Haskell
    a251536 n = a251536_list !! (n-1)
    a251536_list = map (flip div 2) $ snd a098548_bisect
    -- where a098548_bisect is defined in a251535.
    -- Reinhard Zumkeller, Dec 08 2014
Showing 1-3 of 3 results.