cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251589 a(n) = 9^(n-7) * (n+1)^(n-9) * (262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969).

Original entry on oeis.org

1, 1, 11, 312, 15261, 1082784, 101540943, 11887094592, 1671909996537, 274908280855680, 51777320665313331, 10995461917161191424, 2599903208658745278549, 677539978514149068122112, 192961347474468607479984375, 59630505640075441195821563904, 19874186375795055056211917494257
Offset: 0

Views

Author

Paul D. Hanna, Dec 06 2014

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 11*x^2/2! + 312*x^3/3! + 15261*x^4/4! + 1082784*x^5/5! +...
such that A(x) = exp( 9*x*A(x) * G(x*A(x))^8 ) / G(x*A(x))^8
where G(x) = 1 + x*G(x)^9 is the g.f. of A062994:
G(x) = 1 + x + 9*x^2 + 117*x^3 + 1785*x^4 + 29799*x^5 + 527085*x^6 +...
RELATED SERIES.
Note that A(x) = F(x*A(x)) where F(x) = exp(9*x*G(x)^8)/G(x)^8,
F(x) = 1 + x + 9*x^2/2! + 225*x^3/3! + 10017*x^4/4! + 656289*x^5/5! +...
is the e.g.f. of A251579.
		

Crossrefs

Programs

  • Magma
    [9^(n - 7)*(n + 1)^(n - 9)*(262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969): n in [0..10]]; // G. C. Greubel, Nov 13 2017
  • Mathematica
    Table[9^(n - 7)*(n + 1)^(n - 9)*(262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969), {n, 0, 50}] (* G. C. Greubel, Nov 13 2017 *)
  • PARI
    {a(n) = 9^(n-7) * (n+1)^(n-9) * (262144*n^7 + 2494464*n^6 + 10470208*n^5 + 25229505*n^4 + 37857568*n^3 + 35537670*n^2 + 19414368*n + 4782969)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = local(G=1,A=1); for(i=1,n, G=1+x*G^9 +x*O(x^n));
    for(i=1,n, A = exp(9*x*A * subst(G^8,x,x*A) ) / subst(G^8,x,x*A) ); n!*polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    

Formula

Let G(x) = 1 + x*G(x)^9 be the g.f. of A062994, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 9*x*A(x) * G(x*A(x))^8 ) / G(x*A(x))^8.
(2) A(x) = F(x*A(x)) where F(x) = exp(9*x*G(x)^8)/G(x)^8 is the e.g.f. of A251579.
(3) a(n) = [x^n/n!] F(x)^(n+1)/(n+1) where F(x) is the e.g.f. of A251579.
E.g.f.: -LambertW(-9*x) * (9 + LambertW(-9*x))^8 / (x*9^9). - Vaclav Kotesovec, Dec 07 2014