cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251621 Run lengths in A249943.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 2, 4, 1, 1, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 6, 4, 6, 8, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 06 2014

Keywords

Examples

			From _Vladimir Shevelev_, Dec 11 2014: (Start)
For formula for prime(n):
1) n=8, prime(8) = 19;
2) n=9, prime(9) = 19 + a(13) = 19 + 4 = 23;
3) n=10, prime(10)= 19 + a(13) + a(14) = 23 + 6 = 29, etc.
(End)
		

References

  • Bradley Klee, Posting to Sequence Fans Mailing List, Dec 07 2014
  • Vladimir Shevelev, Postings to Sequence Fans Mailing List, Dec 07, 10 and 11, 2014

Crossrefs

Programs

  • Haskell
    import Data.List (group)
    a251621 n = a251621_list !! (n-1)
    a251621_list = map length $ group a249943_list
  • Mathematica
    f[lst_] := Block[{k = 4}, While[GCD[lst[[-2]], k] == 1 || GCD[lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 1000]; runningMax = Rest[FoldList[Max, -Infinity, #]]&; A249943 = runningMax[Take[Ordering[A098550], NestWhile[#+1&, 1, MemberQ[A098550, #] &] - 1]]; Length /@ Split[A249943] (* Jean-François Alcover, Sep 11 2017, using code from Robert G. Wilson v *)

Formula

Connection with prime gaps: conjecturally, for n>=13, we have a(n) = A001223(n-5). - Vladimir Shevelev, Dec 07 2014
Bradley Klee noted that this conjecture and his conjectures in A251416 are equivalent. At least to one side, our conjecture could be deduced from Klee's conjectures by a simple induction. - Vladimir Shevelev, Dec 10 2014
As a corollary, we have an explicit conjectural formula for prime(n), n>=8, essentially based on A098550: prime(n) = 19 + sum{i=9,...,n}a(i+4). - Vladimir Shevelev, Dec 11 2014