A251653 5-step Fibonacci sequence starting with 0,0,1,0,0.
0, 0, 1, 0, 0, 1, 2, 4, 7, 14, 28, 55, 108, 212, 417, 820, 1612, 3169, 6230, 12248, 24079, 47338, 93064, 182959, 359688, 707128, 1390177, 2733016, 5372968, 10562977, 20766266, 40825404, 80260631, 157788246, 310203524, 609844071, 1198921876, 2357018348, 4633776065, 9109763884, 17909324244, 35208804417
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- M. A. Nyblom, Counting Palindromic Binary Strings Without r-Runs of Ones, J. Int. Seq. 16 (2013) #13.8.7, P_5(n)
- H. Prodinger, Counting Palindromes According to r-Runs of Ones Using Generating Functions, J. Int. Seq. 17 (2014) # 14.6.2, even length, r=4.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1).
Crossrefs
Programs
-
J
(see www.jsoftware.com) First construct the generating matrix 1 1 1 1 1 1 2 2 2 2 2 3 4 4 4 4 6 7 8 8 8 12 14 15 16 Given that matrix one can produce the first 5*200 numbers by , M(+/ . *)^:(i.250) 0 0 1 0 0x
-
Mathematica
LinearRecurrence[{1, 1, 1, 1, 1}, {0, 0, 1, 0, 0}, 100] (* G. C. Greubel, May 27 2016 *)
Formula
a(n+5) = a(n) + a(n+1) + a(n+2) + a(n+3) + a(n+4).
G.f.: x^2*(x^2 + x - 1)/(x^5 + x^4 + x^3 + x^2 + x - 1). - Chai Wah Wu, May 27 2016
Comments