A251700 a(n) = (8*n+1) * (9*n+1)^(n-2) * 10^n.
1, 9, 1700, 700000, 451770000, 399077600000, 448380625000000, 612032839680000000, 983672470878500000000, 1819783935144064000000000, 3809045473682732010000000000, 8900000000000000000000000000000, 22963427643543537169897000000000000, 64847222511564256853913600000000000000
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 9*x + 1700*x^2/2! + 700000*x^3/3! + 451770000*x^4/4! + 399077600000*x^5/5! +... such that A(x) = exp( 10*x*A(x)^9 * G(x*A(x)^9)^9 ) / G(x*A(x)^9), where G(x) = 1 + x*G(x)^10 is the g.f. A059968: G(x) = 1 + x + 10*x^2 + 145*x^3 + 2470*x^4 + 46060*x^5 + 910252*x^6 +... Also, e.g.f. A(x) satisfies A(x) = F(x*A(x)^9) where F(x) = 1 + 9*x + 242*x^2/2! + 11824*x^3/3! + 856824*x^4/4! + 82986080*x^5/5! +... F(x) = exp( 10*x*G(x)^9 ) / G(x) is the e.g.f. of A251670.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..230
Crossrefs
Programs
-
Magma
[(8*n + 1)*(9*n + 1)^(n - 2)*10^n: n in [0..50]]; // G. C. Greubel, Nov 14 2017
-
Mathematica
Table[(8*n + 1)*(9*n + 1)^(n - 2)*10^n, {n, 0, 50}] (* G. C. Greubel, Nov 14 2017 *)
-
PARI
{a(n) = (8*n+1) * (9*n+1)^(n-2) * 10^n} for(n=0,20,print1(a(n),", "))
-
PARI
{a(n)=local(G=1,A=1); for(i=0, n, G = 1 + x*G^10 +x*O(x^n)); A = ( serreverse( x*G^9 / exp(90*x*G^9) )/x )^(1/9); n!*polcoeff(A, n)} for(n=0, 20, print1(a(n), ", "))
Formula
Let G(x) = 1 + x*G(x)^10 be the g.f. of A059968, then the e.g.f. A(x) of this sequence satisfies:
(1) A(x) = exp( 10*x*A(x)^9 * G(x*A(x)^9)^9 ) / G(x*A(x)^9).
(2) A(x) = F(x*A(x)^9) where F(x) = exp(10*x*G(x)^9)/G(x) is the e.g.f. of A251670.
(3) A(x) = ( Series_Reversion( x*G(x)^9 / exp(90*x*G(x)^9) )/x )^(1/9).
E.g.f.: (-LambertW(-90*x)/(90*x))^(1/9) * (1 + LambertW(-90*x)/90). - Vaclav Kotesovec, Dec 07 2014
Comments