A251732 a(n) = 3^n*A123335(n). Rational parts of the integers in Q(sqrt(2)) giving the length of a Lévy C-curve variant at iteration step n.
1, -3, 27, -189, 1377, -9963, 72171, -522693, 3785697, -27418419, 198581787, -1438256493, 10416775041, -75444958683, 546420727467, -3957528992949, 28662960504897, -207595523965923, 1503539788339611, -10889598445730973, 78869448769442337, -571223078628232779
Offset: 0
Examples
The first lengths a(n) + A251733(n)*sqrt(2) are: 1, -3 + 3*sqrt(2), 27 - 18*sqrt(2), -189 + 135*sqrt(2), 1377 - 972*sqrt(2), -9963 + 7047*sqrt(2), 72171 - 51030*sqrt(2), -522693 + 369603*sqrt(2), 3785697 - 2676888*sqrt(2), -27418419 + 19387755*sqrt(2), 198581787 - 140418522*sqrt(2), ... - _Wolfdieter Lang_, Dec 08 2014
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- MathImages, Lévy's C-curve
- Kival Ngaokrajang, Construction rule, Illustration of modified Lévy C curve
- Wikipedia, Lévy C curve
- Index entries for linear recurrences with constant coefficients, signature (-6,9).
Programs
-
Magma
[Round(((3*(-1+Sqrt(2)))^n + (-3*(1+Sqrt(2)))^n)/2): n in [0..30]]; // G. C. Greubel, Nov 18 2017
-
Mathematica
LinearRecurrence[{-6,9}, {1,-3}, 30] (* G. C. Greubel, Nov 18 2017 *)
-
PARI
Vec(-(3*x+1) / (9*x^2-6*x-1) + O(x^100)) \\ Colin Barker, Dec 07 2014
Formula
a(n) = 3^n*A123335(n).
a(n) = -6*a(n-1) + 9*a(n-2). - Colin Barker, Dec 07 2014
G.f.: -(3*x+1)/(9*x^2-6*x-1). - Colin Barker, Dec 07 2014
a(n) = ((3*(-1+sqrt(2)))^n + (-3*(1+sqrt(2)))^n) / 2. - Colin Barker, Jan 21 2017
E.g.f.: exp(-3*x)*cosh(3*sqrt(2)*x). - Stefano Spezia, Feb 01 2023
Extensions
More terms from Colin Barker, Dec 07 2014
Edited: Name specified, Q(sqrt(2))remarks given earlier in a comment to a first version, MathImages link added. - Wolfdieter Lang, Dec 07 2014
Comments