A251733 a(n) = 3^n*A077985(n-1), A077985(-1) = 0. Irrational parts of the integers in Q(sqrt(2)) giving the length of a Lévy C-curve variant at iteration step n.
0, 3, -18, 135, -972, 7047, -51030, 369603, -2676888, 19387755, -140418522, 1017000927, -7365772260, 53347641903, -386377801758, 2798395587675, -20267773741872, 146792202740307, -1063163180118690, 7700108905374903, -55769122053317628, 403915712468279895
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Kival Ngaokrajang, Construction rule, Illustration of modified Lévy C curve
- Wikipedia, Lévy C curve
- Index entries for linear recurrences with constant coefficients, signature (-6,9).
Programs
-
Magma
[Round(((3*(-1+Sqrt(2)))^n - (-3*(1+Sqrt(2)))^n)/(2*Sqrt(2))): n in [0..30]]; // G. C. Greubel, Nov 18 2017
-
Mathematica
LinearRecurrence[{-6,9}, {0,3}, 30] (* G. C. Greubel, Nov 18 2017 *)
-
PARI
concat(0, Vec(-3*x / (9*x^2-6*x-1) + O(x^100))) \\ Colin Barker, Dec 07 2014
Formula
G.f.: 3*x /(1 + 6*x - 9*x^2). See the Colin Barker, Dec 07 2014 program.
a(n) = ((3*(-1+sqrt(2)))^n - (-3*(1+sqrt(2)))^n)/(2*sqrt(2)). - Colin Barker, Jan 21 2017
E.g.f.: exp(-3*x)*sinh(3*sqrt(2)*x)/sqrt(2). - Stefano Spezia, Feb 01 2023
Extensions
More terms from Colin Barker, Dec 07 2014
Edited: see A251732. - Wolfdieter Lang, Dec 07 2014
Comments