A251820 Numbers n for which the symmetric representation of sigma(n) has at least 3 parts, all having the same area.
15, 5950
Offset: 1
Examples
The parts of the symmetric representations of sigma(15) and sigma(5950) are {8, 8, 8} and {4464, 4464, 4464}, respectively, so a(1) = 15 and a(2) = 5950. From _Omar E. Pol_, Dec 09 2014: (Start) Illustration of the symmetric representation of sigma(15) = 8 + 8 + 8 = 24 in the first quadrant: . . _ _ _ _ _ _ _ _ 8 . |_ _ _ _ _ _ _ _| . | . |_ _ . |_ |_ 8 . | |_ . |_ _ | . |_|_ _ _ 8 . | | . | | . | | . | | . | | . | | . | | . |_| . The three parts have the same area. (End)
Programs
-
Mathematica
(* T[], row[], cD[] & tD[] are defined in A239663 *) a251820[n_] := Module[{pT = T[n, 1], cT, cL, cW = 0, cR = 0, sects = {}, j = 1, r = row[n], test = True}, While[test && j <= r, cT = T[n, j+1]; cL = pT - cT; cW += (-1)^(j+1) * tD[n, j]; If[cW == 0 && cR != 0, AppendTo[sects, cR]; cR = 0; If[Min[sects] != Max[sects], test = False], cR += cL * cW]; pT = cT; j++]; If[cW != 0, AppendTo[sects, 2 * cR - cW]]; Min[sects] == Max[sects] && Length[sects] > 1] Select[Range[50000], a251820] (* data *)
Comments