cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251924 Numbers n such that the sum of the triangular numbers T(n) and T(n+1) is equal to a hexagonal number H(m) for some m.

Original entry on oeis.org

0, 34, 1188, 40390, 1372104, 46611178, 1583407980, 53789260174, 1827251437968, 62072759630770, 2108646576008244, 71631910824649558, 2433376321462076760, 82663163018885960314, 2808114166320660573948, 95393218491883573553950, 3240561314557720840260384
Offset: 1

Views

Author

Colin Barker, Dec 11 2014

Keywords

Comments

Also nonnegative integers x in the solutions to 2*x^2-4*y^2+4*x+2*y+2 = 0, the corresponding values of y being A008844.
First bisection of A076708. [Bruno Berselli, Dec 11 2014]

Examples

			34 is in the sequence because T(34)+T(35) = 595+630 = 1225 = H(25).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{0,34,1188},20] (* Harvey P. Dale, Feb 04 2019 *)
  • PARI
    concat(0, Vec(2*x^2*(x-17)/((x-1)*(x^2-34*x+1)) + O(x^100)))

Formula

a(n) = 35*a(n-1)-35*a(n-2)+a(n-3).
G.f.: 2*x^2*(x-17) / ((x-1)*(x^2-34*x+1)).
a(n) = (-8-(4+3*sqrt(2))*(17+12*sqrt(2))^(-n)+(-4+3*sqrt(2))*(17+12*sqrt(2))^n)/8. - Colin Barker, Mar 02 2016