A251926 The Faulhaber-Knuth a(0,n) sequence.
2, 1, 1, 1, 1, 0, 0, 1, 37, -60, -5, 37, 174, -955, -10545, 38610, 176297, -322740, -205420, 4512655, 56820585, -104019264, -25907081, 94854194, 1141847218, -2090335775, -414239903275, 6066664425833, 85621405759989, -156743813184120, -4337631088920, 47644406040193, 1265208493396175131, -2316168508680582540, -192288633159406495
Offset: 4
Keywords
Examples
We have: T_4(x) = 3x^2 + 3x - 1, T_4(x) - T_5(x) = x^2 + x, T_6(x) - T_7(x) = x^2 + x - 1, T_9(x) = (x^2 + x - 1)(2x^4 + 4x^3 - x^2 - 3x + 3) and T_15(x) - T_12(x) is divisible by (x^2 + x - 1), which implies a(0)=2, a(1)=1, a(2)=a(3), a(5)=0 and a(8)=a(11).
Links
- Edyta Hetmaniok, Piotr Lorenc, Mariusz Pleszczyński, and Roman Wituła, Iterated integrals of polynomials, Applied Mathematics and Computation, Volume 249, 15 December 2014, Pages 389-398.
- D. E. Knuth, Johann Faulhaber and sums of powers, Math. Comput. 203 (1993), 277-294.
- Piotr Lorenc, Jakub Jan Ludew, Mariusz Pleszczyński, Alicja Samulewicz, and Roman Wituła, Iterated integrals of Faulhaber polynomials and some properties of their roots, 2018.
Programs
-
Mathematica
coeffFaulh[n_] := Module[{t, tab = {}, s, p, x}, If[n < 4, Return["Give n greater than 3."]]; t = Table[1, {n + 2}]; Do[t[[i + 1]] = BernoulliB[i], {i, 1, n + 1}]; t[[2]] = 1/2; s[m_, x_] := (Sum[Binomial[m + 1, i]t[[ i + 1]] x^(m + 1 - i),{i,0,m}])/(m + 1); Do[If[Mod[i, 2] == 0, p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x (x + 1) (2 x + 1))][[2,1]], -1 + x + x^2, x], p = PolynomialRemainder[FactorList[Factor[s[i, x]] (i + 1)/(x^2 (x + 1)^2)][[2,1]], -1 + x + x^2, x]]; tab = Append[tab, p], {i, 4, n}]; tab]
Comments