A252075 T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with every 3X3 subblock row, column, diagonal and antidiagonal sum not equal to 0 3 or 4.
92, 105, 105, 183, 152, 183, 375, 419, 419, 375, 767, 1135, 1497, 1135, 767, 1573, 3029, 5085, 5085, 3029, 1573, 3279, 8352, 17455, 21862, 17455, 8352, 3279, 6994, 23091, 60245, 92225, 92225, 60245, 23091, 6994, 15046, 63460, 206747, 391934, 480464
Offset: 1
Examples
Some solutions for n=4 k=4 ..2..1..2..2..2..1....2..2..2..2..2..2....2..2..1..2..2..2....1..2..2..2..1..2 ..1..2..2..2..2..2....2..1..2..2..2..2....2..2..2..2..2..2....2..2..2..2..2..1 ..2..2..2..2..2..2....2..2..2..2..1..2....2..1..2..2..2..2....2..1..2..2..2..2 ..2..2..2..2..2..2....2..2..2..2..2..2....2..2..2..2..1..2....2..2..2..2..2..2 ..2..1..2..2..1..2....2..2..2..2..2..2....1..2..2..2..2..2....1..2..2..2..2..2 ..2..2..2..2..2..2....2..2..2..2..2..1....2..2..2..1..2..2....2..1..2..2..2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..391
Formula
Empirical for column k:
k=1: [linear recurrence of order 12] for n>14
k=2: [order 9] for n>11
k=3: [order 16] for n>18
k=4: [order 24] for n>26
k=5: [order 44] for n>46
k=6: [order 72] for n>74
Comments