A252117 Irregular triangle read by row: T(n,k), n>=1, k>=1, in which column k lists the numbers of A000716 multiplied by A000330(k), and the first element of column k is in row A000217(k).
1, 3, 9, 5, 22, 15, 51, 45, 108, 110, 14, 221, 255, 42, 429, 540, 126, 810, 1105, 308, 1479, 2145, 714, 30, 2640, 4050, 1512, 90, 4599, 7395, 3094, 270, 7868, 13200, 6006, 660, 13209, 22995, 11340, 1530, 21843, 39340, 20706, 3240, 55, 35581, 66045, 36960, 6630, 165, 57222, 109215, 64386, 12870, 495
Offset: 1
Examples
Triangle begins: 1; 3; 9, 5; 22, 15; 51, 45; 108, 110, 14; 221, 255, 42; 429, 540, 126; 810, 1105, 308; 1479, 2145, 714, 30; 2640, 4050, 1512, 90; 4599, 7395, 3094, 270; 7868, 13200, 6006, 660; 13209, 22995, 11340, 1530; 21843, 39340, 20706, 3240, 55; 35581, 66045, 36960, 6630, 165; 57222, 109215, 64386, 12870, 495; 90882, 177905, 110152, 24300, 1210; 142769, 286110, 184926, 44370, 2805; 221910, 454410, 305802, 79200, 5940; 341649, 713845, 498134, 137970, 12155, 91; ... For n = 6 the divisors of 6 are 1, 2, 3, 6, so the sum of the divisors of 6 is 1 + 2 + 3 + 6 = 12. On the other hand, the 6th row of the triangle is 108, 110, 14, so the alternating row sum is 108 - 110 + 14 = 12, equaling the sum of the divisors of 6. For n = 15 the divisors of 15 are 1, 3, 5, 15, so the sum of the divisors of 15 is 1 + 3 + 5 + 15 = 24. On the other hand, the 15th row of the triangle is 21843, 39340, 20706, 3240, 55, so the alternating row sum is 21843 - 39340 + 20706 - 3240 + 55 = 24, equaling the sum of the divisors of 15.
Links
- Masazumi Honda and Takuya Yoda, String theory, N = 4 SYM and Riemann hypothesis, arXiv:2203.17091 [hep-th], (2022), pp. 5-6.
- Index entries for sequences related to sigma(n)
Comments