cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252170 Smallest primitive prime factor of 12^n-1.

Original entry on oeis.org

11, 13, 157, 5, 22621, 7, 659, 89, 37, 19141, 23, 20593, 477517, 211, 61, 17, 2693651, 1657, 29043636306420266077, 85403261, 8177824843189, 57154490053, 47, 193, 303551, 79, 306829, 673, 59, 31, 373, 153953, 886381, 2551, 71, 73, 3933841, 3307
Offset: 1

Views

Author

Eric Chen, Dec 15 2014

Keywords

Comments

Also, smallest prime p such that 1/p has duodecimal period n.

Examples

			a(4) = 5 because 1/5 = 0.249724972497... and 5 is the smallest prime with period 4 in base 12.
a(5) = 22621 because 1/22621 = 0.0000100001... and 22621 is the smallest (in fact, the only one) prime with period 5 in base 12.
		

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).

Programs

  • Maple
    S:= {}:
    for n from 1 to 72 do
      F:= numtheory:-factorset(12^n-1) minus S;
      A[n]:= min(F);
      S:= S union F;
    od:
    seq(A[n], n=1..72);
  • Mathematica
    prms={}; Table[f=First/@FactorInteger[12^n-1]; p=Complement[f, prms]; prms=Join[prms, p]; If[p=={}, 1, First[p]], {n, 72}]
  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(12^n-1)[,1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "););} \\ Michel Marcus, Dec 15 2014; after A007138

Extensions

Edited by Max Alekseyev, Aug 26 2021