A252255 Numbers n such that sigma(Rev(phi(n))) = phi(Rev(sigma(n))), where sigma is the sum of divisors and phi the Euler totient function.
1, 14, 61, 966, 1428, 9174, 15642, 19934, 22155, 27075, 36650, 48731, 51095, 54184, 57902, 59711, 61039, 89276, 98645, 113080, 126850, 140283, 142149, 154670, 165822, 190908, 197705, 198712, 202096, 203107, 247268, 274368, 274716, 307836, 311925, 331037, 366740
Offset: 1
Examples
phi(14) = 6, Rev(6) = 6 and sigma(6) = 12; sigma(14) = 24, Rev(24) = 42 and sigma(42) = 12.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..100
Programs
-
Maple
with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w; for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end: P:=proc(q) local a, b, k; global n; for n from 1 to q do if sigma(T(phi(n)))=phi(T(sigma(n))) then print(n); fi; od; end: P(10^12);
-
Mathematica
Select[Range[400000],DivisorSigma[1,IntegerReverse[EulerPhi[#]]] == EulerPhi[ IntegerReverse[ DivisorSigma[ 1,#]]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 15 2017 *)