cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252255 Numbers n such that sigma(Rev(phi(n))) = phi(Rev(sigma(n))), where sigma is the sum of divisors and phi the Euler totient function.

Original entry on oeis.org

1, 14, 61, 966, 1428, 9174, 15642, 19934, 22155, 27075, 36650, 48731, 51095, 54184, 57902, 59711, 61039, 89276, 98645, 113080, 126850, 140283, 142149, 154670, 165822, 190908, 197705, 198712, 202096, 203107, 247268, 274368, 274716, 307836, 311925, 331037, 366740
Offset: 1

Views

Author

Paolo P. Lava, Dec 16 2014

Keywords

Examples

			phi(14) = 6, Rev(6) = 6 and sigma(6) = 12;
sigma(14) = 24, Rev(24) = 42 and sigma(42) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w;
    for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end:
    P:=proc(q) local a, b, k; global n; for n from 1 to q do
    if sigma(T(phi(n)))=phi(T(sigma(n))) then print(n); fi; od; end: P(10^12);
  • Mathematica
    Select[Range[400000],DivisorSigma[1,IntegerReverse[EulerPhi[#]]] == EulerPhi[ IntegerReverse[ DivisorSigma[ 1,#]]]&] (* Requires Mathematica version 10 or later *)  (* Harvey P. Dale, Apr 15 2017 *)