A252282 Intersection of A251964 and A252280.
2, 5, 7, 11, 19, 37, 41, 61, 71, 73, 101, 109, 127, 163, 181, 211, 241, 271, 307, 313, 383, 421, 433, 523, 541, 587, 601, 613, 631, 811, 947, 971, 983, 1013, 1031, 1033, 1063, 1123, 1153, 1171, 1201, 1229, 1303, 1423, 1483, 1531, 1621, 1973, 2053, 2113, 2207, 2311, 2341
Offset: 1
Programs
-
Mathematica
s[p_, k_] := Module[{s = Total[IntegerDigits[p^k]]}, s/2^IntegerExponent[s, 2]]; f[p_, q_] := Module[{k = 1}, While[! Divisible[s[p, k], q], k++]; k]; okQ[p_, q_] := s[p, f[p, q]] == q; Select[Range[2400], PrimeQ[#] && okQ[#, 5] && okQ[#, 7] &] (* Amiram Eldar, Dec 08 2018 *)
-
PARI
s(p,k) = my(s=sumdigits(p^k)); s >> valuation(s, 2); f5(p) = my(k=1); while(s(p,k) % 5, k++); k; isok5(p) = s(p, f5(p)) == 5; f7(p) = my(k=1); while(s(p,k) % 7, k++); k; isok7(p) = s(p, f7(p)) == 7; lista(nn) = forprime(p=2, nn, if (isok5(p) && isok7(p), print1(p, ", "))); \\ Michel Marcus, Dec 08 2018
Extensions
More terms from Michel Marcus, Dec 08 2018
Comments