cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252282 Intersection of A251964 and A252280.

Original entry on oeis.org

2, 5, 7, 11, 19, 37, 41, 61, 71, 73, 101, 109, 127, 163, 181, 211, 241, 271, 307, 313, 383, 421, 433, 523, 541, 587, 601, 613, 631, 811, 947, 971, 983, 1013, 1031, 1033, 1063, 1123, 1153, 1171, 1201, 1229, 1303, 1423, 1483, 1531, 1621, 1973, 2053, 2113, 2207, 2311, 2341
Offset: 1

Views

Author

Keywords

Comments

For a prime p, denote by s(p,k) the odd part of the digital sum of p^k. Let, for the first time, s(p,k) be divisible of 5 for k=k_1 and be divisible of 7 for k=k_2.
Sequence lists primes p for which s(p,k_1)=5 and s(p,k_2)=7.

Crossrefs

Programs

  • Mathematica
    s[p_, k_] := Module[{s = Total[IntegerDigits[p^k]]}, s/2^IntegerExponent[s, 2]]; f[p_, q_] := Module[{k = 1}, While[! Divisible[s[p, k], q], k++]; k]; okQ[p_, q_] := s[p, f[p, q]] == q; Select[Range[2400],  PrimeQ[#] && okQ[#, 5] && okQ[#, 7] &] (* Amiram Eldar, Dec 08 2018 *)
  • PARI
    s(p,k) = my(s=sumdigits(p^k)); s >> valuation(s, 2);
    f5(p) = my(k=1); while(s(p,k) % 5, k++); k;
    isok5(p) = s(p, f5(p)) == 5;
    f7(p) = my(k=1); while(s(p,k) % 7, k++); k;
    isok7(p) = s(p, f7(p)) == 7;
    lista(nn) = forprime(p=2, nn, if (isok5(p) && isok7(p), print1(p, ", "))); \\ Michel Marcus, Dec 08 2018

Extensions

More terms from Michel Marcus, Dec 08 2018