A297113 a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)).
0, 1, 2, 2, 3, 2, 4, 3, 3, 3, 5, 3, 6, 4, 3, 4, 7, 3, 8, 4, 4, 5, 9, 4, 4, 6, 4, 5, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 5, 13, 4, 14, 6, 4, 9, 15, 5, 5, 4, 7, 7, 16, 4, 5, 6, 8, 10, 17, 4, 18, 11, 5, 6, 6, 5, 19, 8, 9, 4, 20, 5, 21, 12, 4, 9, 5, 6, 22, 6, 5, 13, 23, 5, 7, 14, 10, 7, 24, 4, 6, 10, 11, 15, 8, 6, 25
Offset: 1
Keywords
Links
Crossrefs
Programs
-
Mathematica
Table[If[n==1,0,PrimePi[FactorInteger[n][[-1,1]]]+PrimeOmega[n]-PrimeNu[n]],{n,100}] (* Gus Wiseman, Apr 06 2019 *)
-
PARI
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A297113(n) = if(n<=2,n-1,if(n%2,1+A297113(A064989(n)), !(n%4)+A297113(n/2)));
-
PARI
\\ More complex way, after Moebius transform: A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); A297112(n) = sumdiv(n,d,moebius(n/d)*A156552(d)); A297113(n) = if(1==n,0,1+valuation(A297112(n),2));
-
Scheme
;; With memoization-macro definec. (definec (A297113 n) (cond ((<= n 2) (- n 1)) ((= 2 (modulo n 4)) (A297113 (/ n 2))) (else (+ 1 (A297113 (A252463 n))))))
Formula
a(1) = 0, a(2) = 1, after which, a(n) = a(n/2) if n is of the form 4k+2, and otherwise a(n) = 1+a(A252463(n)) .
For n > 1, a(n) = 1+A033265(A156552(n)) = 1+A297167(n) = A046660(n) + A061395(n). - Last two sums added by Antti Karttunen, Sep 02 2018
Other identities. For all n >= 1:
a(A000040(n)) = n. [Each n occurs for the first time at the n-th prime.]
Comments