A252486 Smallest k such that n^6 = a_1^6+...+a_k^6 where all the a_i are positive integers less than n.
64, 36, 15, 29, 22, 21, 15, 19, 15, 17, 15, 16, 14, 15, 13, 12, 11, 11, 13, 14, 12, 13, 13, 12, 12, 12, 12, 12, 11, 11, 11, 11, 11, 13, 11, 11, 11, 10, 11, 11, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 9, 11, 10, 11, 11, 11, 9, 10, 11, 11, 11, 11, 10
Offset: 2
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 2..200
- Jean-Charles Meyrignac, Computing Minimal Equal Sums Of Like Powers
- Manfred Scheucher, Sage Script
- Eric W. Weisstein, Diophantine Equation--6th Powers
- Eric W. Weisstein, Waring's Problem
Programs
-
Maple
M:= 10^8: R:= Vector(M, 74, datatype=integer[4]): for p from 1 to floor(M^(1/6)) do p6:= p^6; if p > 1 then A[p]:= R[p6] fi; R[p6]:= 1; for j from p6+1 to M do R[j]:= min(R[j], 1+R[j - p6]); od od: F:= proc(n, k, ub) local lb, m, bestyet, res; if ub <= 0 then return -1 fi; if n <= M then if n = 0 then return 0 elif R[n] > ub then return -1 else return R[n] fi fi; lb:= floor(n/k^6); if lb > ub then return -1 fi; bestyet:= ub; for m from lb to 0 by -1 do res:= procname(n-m*k^6, k-1, bestyet-m); if res >= 0 then bestyet:= res+m; fi od: return bestyet end proc: for n from floor(M^(1/6))+1 to 50 do A[n]:= F(n^6, n-1, 73) od: seq(A[n], n=2..50); # Robert Israel, Aug 17 2015
-
Mathematica
a[n_] := Module[{k}, For[k = 7, True, k++, If[IntegerPartitions[n^6, {k}, Range[n-1]^6] != {}, Print[n, " ", k]; Return[k]]]]; Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Jul 29 2023 *)
-
PARI
a(n,verbose=0,m=6)={N=n^m;for(k=3,64,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))}
-
Python
from itertools import count from sympy.solvers.diophantine.diophantine import power_representation def A252486(n): m = n**6 for k in count(2): try: next(power_representation(m,6,k)) except: continue return k # Chai Wah Wu, Jun 25 2024
Extensions
More terms from Manfred Scheucher, Aug 15 2015
a(53)-a(66) from Giovanni Resta, Aug 17 2015
Comments