cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252606 Numbers j such that j + 2 divides 2^j + 2.

Original entry on oeis.org

3, 4, 16, 196, 2836, 4551, 5956, 25936, 46775, 65536, 82503, 540736, 598816, 797476, 1151536, 3704416, 4290771, 4492203, 4976427, 8095984, 11272276, 13362420, 21235696, 21537831, 21549347, 29640832, 31084096, 42913396, 49960912, 51127259, 55137316, 56786087, 60296571, 70254724, 70836676
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 03 2015

Keywords

Comments

Numbers j such that (2^j + 2)/(j + 2) is an integer. Numbers j such that (2^j - j)/(j + 2) is an integer.
From Robert Israel, Apr 09 2015: (Start)
The even members of this sequence (4, 16, 196, 2836, ...) are the numbers 2*k-2 where k>=3 is odd and 4^k == -8 (mod k).
The odd members of this sequence (3, 4551, 46775, 82503, ...) are the numbers k-2 where k>=3 is odd and 2^k == -8 (mod k). (End)
2^m is in this sequence for m = (2, 4, 16, 36, 120, 256, 456, 1296, 2556, ...), with the subsequence m = 2^k, k = (1, 2, 4, 8, 16, ...). - M. F. Hasler, Apr 09 2015

Examples

			3 is in this sequence because (2^3 + 2)/(3 + 2) = 2.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200000] | Denominator((2^n+2)/(n+2)) eq 1];
    
  • Maple
    select(t -> 2 &^t + 2 mod (t + 2) = 0, [$1..10^6]); # Robert Israel, Apr 09 2015
  • Mathematica
    Select[Range[10^6],IntegerQ[(2^#+2)/(#+2)]&] (* Ivan N. Ianakiev, Apr 17 2015 *)
  • PARI
    for(n=1,10^5,if((2^n+2)%(n+2)==0,print1(n,", "))) \\ Derek Orr, Apr 05 2015
    
  • PARI
    is(n)=Mod(2,n+2)^n==-2 \\ M. F. Hasler, Apr 09 2015
    
  • Python
    A252606_list = [n for n in range(10**4) if pow(2, n, n+2) == n] # Chai Wah Wu, Apr 16 2015

Extensions

a(17)-a(22) from Tom Edgar, Mar 03 2015
More terms from Chai Wah Wu, Apr 16 2015