cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A252665 Number of ways to write n as n = a*b*c*d*e with 1 <= a <= b <= c <= d <= e <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 5, 1, 4, 1, 4, 2, 2, 1, 7, 2, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 9, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 2, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 10, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 5, 2, 1, 11, 2
Offset: 1

Views

Author

Michel Lagneau, Dec 20 2014

Keywords

Comments

Starts the same as, but is different from A218320 where a(n) = A218320(n) for n = 1..31. First values of n such that a(n) differs from A218320(n) are 32, 48, 64, 72, 80, ... .
Also starts the same as A001055, but differs from it for n = 64, ...

Examples

			a(12) = 4 because we can write 12 = 1*1*1*1*12 = 1*1*1*2*6 = 1*1*1*3*4 = 1*1*2*2*3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, t) option remember;
          `if`(n=1, 1, `if`(t=1, `if`(n<=i, 1, 0),
           add(b(n/d, d, t-1), d=select(x->x<=i, divisors(n)))))
        end:
    a:= proc(n) local l, m;
          l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
          m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
          b(m, m, 5)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Aug 31 2017
  • Mathematica
    Table[c=0; Do[If[i<=j<=k<=l<=m && i*j*k*l*m==n, c++], {i, t=Divisors[n]}, {j, t}, {k, t}, {l, t}, {m, t}]; c, {n, 90}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 1, 1, If[t == 1, Boole[n <= i], Sum[b[n/d, d, t - 1], {d, Select[Divisors@ n, # <= i &]}]]]; Parallelize@ Array[b[#, #, 5] &@ Apply[Times, Power @@@ Sort[FactorInteger[#], #1[[2]] > #2[[2]] &]] &, 120] (* Michael De Vlieger, Aug 31 2017, after Jean-François Alcover at A218320 *)