cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A062817 a(n) = Sum_{i=0..n} i^(n - i)*(n - i)^i.

Original entry on oeis.org

0, 1, 4, 22, 152, 1251, 11980, 130908, 1607488, 21915525, 328477396, 5368649634, 95026828136, 1810930007495, 36968511612124, 804857864647544, 18615565047797520, 455834881650397833, 11780900281221329892
Offset: 1

Views

Author

Olivier Gérard, Jun 23 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[i^(n-i)*(n-i)^i,{i,0,n}],{n,20}] (* Harvey P. Dale, Jan 14 2017 *)
  • PARI
    for(n=1,25, print1(sum(k=0,n, k^(n-k)*(n-k)^k), ", ")) \\ G. C. Greubel, Jan 25 2017

Formula

a(n) ~ sqrt(Pi/3) * n^(n+1/2) / 2^(n+1/2). - Vaclav Kotesovec, Dec 20 2014

Extensions

Prior Mathematica program deleted by Harvey P. Dale, Jan 14 2017

A252709 Sum_{k=0..n} k^(n+k)*(n-k)^k.

Original entry on oeis.org

0, 1, 34, 2446, 315788, 66140883, 21216724582, 10063816019004, 6854671838281696, 6482951652242448021, 8197210060548767881834, 13365577359964731097098090, 27292891758122129732383863668, 68341049055686519197950975142247, 206830351842829303737616801603098478
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 20 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(n+k)*(n-k)^k, {k, 0, n}], {n, 1, 15}]

Formula

log(a(n)) ~ n*(3*log(n)- log(log(n)) - 1 - log(2) + (log(log(n)) + log(2) - 2) / (2*log(n))). - Vaclav Kotesovec, Nov 22 2021

A252710 Sum_{k=0..n} k^(n-k)*(n+k)^k.

Original entry on oeis.org

2, 19, 270, 5274, 131250, 3971953, 141615782, 5814096100, 270145723914, 14014491434175, 802959561033630, 50357860270776302, 3431283333644097698, 252413829036827831821, 19937800344936448113750, 1683065517269356710047112, 151213514611062314791034874
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 20 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^(n-k)*(n+k)^k, {k, 0, n}], {n, 1, 20}]

Formula

a(n) ~ 2^n * n^n / (1-exp(-1/2)/2). - Vaclav Kotesovec, Dec 20 2014
Showing 1-3 of 3 results.