A252760 Number of moduli m such that the multiplicative order of n mod m equals n.
0, 1, 2, 4, 9, 10, 12, 72, 112, 33, 12, 212, 42, 22, 108, 96, 35, 456, 6, 1912, 714, 220, 60, 5364, 4032, 747, 448, 3944, 762, 24370, 8, 5376, 738, 8148, 996, 253568, 1143, 242, 980, 46032, 248, 65138, 56, 23004, 195768, 282, 28, 386736, 327520, 12102, 24366
Offset: 1
Keywords
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*tau(n^d-1), d=divisors(n)): seq(a(n), n=1..30);
-
Mathematica
a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, n^#-1]&]; a[1] = 0; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 46}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
-
PARI
a(n) = if (n==1, 1, sumdiv(n, d, moebius(n/d)*numdiv(n^d-1))); \\ Michel Marcus, Mar 25 2017