A252764 Number of length n primitive (=aperiodic or period n) n-ary words.
1, 2, 24, 240, 3120, 46410, 823536, 16773120, 387419760, 9999899910, 285311670600, 8916097441680, 302875106592240, 11112006720144330, 437893890380096640, 18446744069414584320, 827240261886336764160, 39346408075098144278664, 1978419655660313589123960
Offset: 1
Keywords
Examples
a(3) = 24 because there are 24 primitive words of length 3 over 3-letter alphabet {a,b,c}: aab, aac, aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbc, bca, bcb, bcc, caa, cab, cac, cba, cbb, cbc, cca, ccb.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..350
Programs
-
Maple
with(numtheory): a:= n-> add(n^d *mobius(n/d), d=divisors(n)): seq(a(n), n=1..25);
-
Mathematica
a[n_] := DivisorSum[n, n^# * MoebiusMu[n/#]& ]; Array[a, 25] (* Jean-François Alcover, Mar 24 2017, translated from Maple *)