A252802
Primes whose trajectory under the map x -> A039951(x) enters the cycle {3, 11, 71}.
Original entry on oeis.org
The trajectory of 19 under the given map starts 19, 3, 11, 71, 3, ..., entering the given cycle, so 19 is a term of the sequence.
A252812
Primes whose trajectories under the map x -> A039951(x) enter the cycle {83, 4871} (conjectured).
Original entry on oeis.org
83, 4871, 8179, 11423, 14071, 16411, 29191, 29531, 35267, 41603, 47963, 56747, 58963, 61331, 68791, 68891, 76039, 82267, 94811, 96739, 110063, 122027, 124823, 156631, 175939, 179383, 183091, 188563, 192991, 198491, 206939, 216119, 219523, 231871, 232591
Offset: 1
The trajectory of 8179 under the given map starts 8179, 83, 4871, 83, 4871, ..., entering the given cycle, so 8179 is a term of the sequence.
More terms via computing prime bases with smallest Wieferich prime 83 from
Felix Fröhlich, Mar 25 2015
A268479
For p = prime(n), number of primes (including p) in the trajectory of p under the procedure in A244550, also allowing the Wieferich prime 2, that are not terms of a repeating cycle.
Original entry on oeis.org
0, 0, 1, 2, 0, 1, 1, 1, 2, 1, 3, 1, 1, 2
Offset: 1
The trajectory of 31 starts 31, 7, 5, 2, 1093, 2, 1093, 2, 1093, ...., entering a repeating cycle consisting of the terms 2 and 1093. There are three terms before the cycle, so a(11) = 3.
A281001
Square array read by antidiagonals downwards: A(n, 1) = smallest Wieferich prime to base n and A(n, k) = smallest Wieferich prime to base A(n, k-1) for k > 1.
Original entry on oeis.org
1093, 2, 11, 1093, 71, 1093, 2, 3, 2, 2, 1093, 11, 1093, 1093, 66161, 2, 71, 2, 2, 2, 5, 1093, 3, 1093, 1093, 1093, 2, 3, 2, 11, 2, 2, 2, 1093, 11, 2, 1093, 71, 1093, 1093, 1093, 2, 71, 1093, 3, 2, 3, 2, 2, 2, 1093, 3, 2, 11, 71, 1093, 11, 1093, 1093, 1093, 2
Offset: 2
Array starts
1093, 2, 1093, 2, 1093, 2, ...
11, 71, 3, 11, 71, 3, ...
1093, 2, 1093, 2, 1093, 2, ...
2, 1093, 2, 1093, 2, 1093, ...
66161, 2, 1093, 2, 1093, 2, ...
5, 2, 1093, 2, 1093, 2, ...
....
-
smallestwieftobase(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p)))
table(rows, cols) = for(x=2, rows+1, my(i=0, w=smallestwieftobase(x)); while(i < cols, print1(w, ", "); w=smallestwieftobase(w); i++); print(""))
table(7, 5) \\ print initial 5 terms of upper 7 rows of array
A269111
a(n) = length of the repeating part of row n of A288097.
Original entry on oeis.org
2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2
Offset: 1
The trajectory of 31 starts 31, 7, 5, 2, 1093, 2, 1093, 2, 1093, ...., entering a repeating cycle of length 2, so a(11) = 2.
-
Table[Length@ DeleteCases[Values@ PositionIndex@ NestList[Function[n, Block[{p = 2}, While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p]], Prime@ n, 12], ?(Length@ # == 1 &)], {n, 12}] (* _Michael De Vlieger, Jun 06 2017, Version 10 *)
-
a039951(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p)))
trajectory(n, terms) = my(v=[n]); while(#v < terms, v=concat(v, a039951(v[#v]))); v
a(n) = my(p=prime(n), i=0, len=2, t=trajectory(p, len), k=#t); while(1, while(k > 1, k--; if(t[k]==t[#t], return(#t-k))); len++; t=trajectory(p, len); k=#t) \\ Felix Fröhlich, Jan 14 2017
A288097
Square array read by antidiagonals downwards: A(n, 1) = smallest base-prime(n) Wieferich prime and A(n, k) = smallest base-A(n, k-1) Wieferich prime for k > 1.
Original entry on oeis.org
1093, 2, 11, 1093, 71, 2, 2, 3, 1093, 5, 1093, 11, 2, 2, 71, 2, 71, 1093, 1093, 3, 2, 1093, 3, 2, 2, 11, 1093, 2, 2, 11, 1093, 1093, 71, 2, 1093, 3, 1093, 71, 2, 2, 3, 1093, 2, 11, 13, 2, 3, 1093, 1093, 11, 2, 1093, 71, 2, 2, 1093, 11, 2, 2, 71, 1093, 2, 3, 1093, 1093, 7
Offset: 1
Array starts
1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2
11, 71, 3, 11, 71, 3, 11, 71, 3, 11
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
5, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2
71, 3, 11, 71, 3, 11, 71, 3, 11, 71
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
3, 11, 71, 3, 11, 71, 3, 11, 71, 3
13, 2, 1093, 2, 1093, 2, 1093, 2, 1093, 2
2, 1093, 2, 1093, 2, 1093, 2, 1093, 2, 1093
-
f[n_] := Block[{p = 2}, While[! Divisible[n^(p - 1) - 1, p^2], p = NextPrime@ p]; p]; T[n_, k_] := T[n, k] = If[k == 1, f@ Prime@ n, f@ T[n, k - 1]]; Table[Function[n, T[n, k]][m - k + 1], {m, 12}, {k, m, 1, -1}] // Flatten (* Michael De Vlieger, Jun 06 2017 *)
-
a039951(n) = forprime(p=1, , if(Mod(n, p^2)^(p-1)==1, return(p)))
table(rows, cols) = forprime(p=1, prime(rows), my(i=0, w=a039951(p)); while(i < cols, print1(w, ", "); w=a039951(w); i++); print(""))
table(10, 10) \\ print initial 10 rows and 10 columns of table
A289899
Primes that are the largest member of a Wieferich cycle.
Original entry on oeis.org
71 is a term, since A039951(71) = 3, A039951(3) = 11 and A039951(11) = 71, so {3, 11, 71} is a Wieferich cycle of length 3 and 71 is the largest member of that cycle.
-
leastwieferich(base, bound) = forprime(p=1, bound, if(Mod(base, p^2)^(p-1)==1, return(p))); 0
is(n) = my(v=[leastwieferich(n, n)]); while(1, if(v[#v]==0, return(0), v=concat(v, leastwieferich(v[#v], n))); my(x=#v-1); while(x > 1, if(v[#v]==v[x], if(n==vecmax(v), return(1), return(0))); x--))
forprime(p=1, , if(is(p), print1(p, ", ")))
Showing 1-7 of 7 results.
Comments