A252812 Primes whose trajectories under the map x -> A039951(x) enter the cycle {83, 4871} (conjectured).
83, 4871, 8179, 11423, 14071, 16411, 29191, 29531, 35267, 41603, 47963, 56747, 58963, 61331, 68791, 68891, 76039, 82267, 94811, 96739, 110063, 122027, 124823, 156631, 175939, 179383, 183091, 188563, 192991, 198491, 206939, 216119, 219523, 231871, 232591
Offset: 1
Examples
The trajectory of 8179 under the given map starts 8179, 83, 4871, 83, 4871, ..., entering the given cycle, so 8179 is a term of the sequence.
Links
- R. Fischer, Thema: Fermatquotient B^(P-1) == 1 (mod P^2)
Extensions
More terms via computing prime bases with smallest Wieferich prime 83 from Felix Fröhlich, Mar 25 2015
Name edited by Felix Fröhlich, Jun 19 2021
Comments