A252849 Numbers with an even number of square divisors.
4, 8, 9, 12, 18, 20, 24, 25, 27, 28, 36, 40, 44, 45, 49, 50, 52, 54, 56, 60, 63, 64, 68, 72, 75, 76, 84, 88, 90, 92, 98, 99, 100, 104, 108, 116, 117, 120, 121, 124, 125, 126, 128, 132, 135, 136, 140, 144, 147, 148
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Ernest Cesàro, Le plus grand diviseur carré, Annali di Matematica Pura ed Applicata, Vol. 13, No. 1 (1885), pp. 251-268, entire volume.
- K. A. P. Dagal, Generalized Locker Problem, arXiv:1307.6455 [math.NT], 2013.
- B. Torrence and S. Wagon, The Locker Problem, Crux Mathematicorum, 2007, 33(4), 232-236.
Crossrefs
Programs
-
Haskell
a252849 n = a252849_list !! (n-1) a252849_list = filter (even . a046951) [1..] -- Reinhard Zumkeller, Apr 06 2015
-
Mathematica
Position[Length@ Select[Divisors@ #, IntegerQ@ Sqrt@ # &] & /@ Range@ 150, Integer?EvenQ] // Flatten (* _Michael De Vlieger, Mar 23 2015 *)
-
PARI
isok(n) = sumdiv(n, d, issquare(d)) % 2 == 0; \\ Michel Marcus, Mar 22 2015
Formula
From Peter Munn, Sep 18 2020: (Start)
Numbers k such that A046951(k) mod 2 = 0.
Numbers k such that A335324(k) > 1.
(End)
Comments