A252897 Rainbow Squares: a(n) = number of ways to pair the integers 1 to 2n so that the sum of each pair is a square.
1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 6, 18, 12, 36, 156, 295, 429, 755, 2603, 7122, 19232, 32818, 54363, 172374, 384053, 933748, 1639656, 4366714, 20557751, 83801506, 188552665, 399677820, 640628927, 2175071240, 8876685569, 32786873829, 108039828494, 351090349416
Offset: 0
Keywords
Examples
One of the solutions for n=13 consists of the following pairings of 1-26: {1,15}, adding to 16; {2,23}, {3,22}, {4,21}, {5,20}, {6,19}, {7,18}, {8,17}, {9,16}, {11,14}, {12, 13}, each adding to 25; {10,26}, adding to 36; {24,25}, adding to 49. There are five other such pairings possible, so a(13) = 6.
Links
- Martin Fuller, Table of n, a(n) for n = 0..42
- Gordon Hamilton, Kiran S. Kedlaya, and Henri Picciotto, Square-Sum Pair Partitions, The College Mathematics Journal, Vol. 46, No. 4 (September 2015), pp. 264-269.
Programs
-
Maple
F:= proc(S) option remember; local s, ts; if nops(S) = 0 then return 1 fi; s:= S[-1]; ts:= select(t -> issqr(s+t),S minus {s}); add(procname(S minus {s,t}), t = ts); end proc: seq(F({$1..2*n}), n = 0 .. 24); # Robert Israel, Mar 22 2015
-
Mathematica
F[S_] := F[S] = Module[{s, ts}, If[Length[S] == 0, Return[1]]; s = S[[-1]]; ts = Select[S ~Complement~ {s}, IntegerQ[Sqrt[s + #]]&]; Sum[F[S ~Complement~ {s, t}], {t, ts}]]; Table[Print[n]; F[Range[2 n]], {n, 0, 24}] (* Jean-François Alcover, Mar 19 2019, after Robert Israel *)
Extensions
a(26)-a(30) from Hiroaki Yamanouchi, Mar 25 2015
a(31) from Alois P. Heinz, Nov 16 2016
a(32)-a(36) from Linus and Joost VandeVondele, Jun 07 2018
a(37)-a(39) from Bert Dobbelaere, Aug 09 2022
Comments