A252911 Irregular triangular array read by rows: T(n,k) is the number of elements in the multiplicative group of integers modulo n that have order k, n>=1, 1<=k<=A002322(n).
1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 2, 0, 0, 2, 1, 3, 1, 1, 2, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 3, 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 3, 0, 4, 1, 3, 0, 4, 1, 1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 8, 1, 1, 2, 0, 0, 2, 1, 1, 2, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 6, 1, 3, 0, 4
Offset: 1
Examples
1; 1; 1, 1; 1, 1; 1, 1, 0, 2; 1, 1; 1, 1, 2, 0, 0, 2; 1, 3; 1, 1, 2, 0, 0, 2; 1, 1, 0, 2; 1, 1, 0, 0, 4, 0, 0, 0, 0, 4; 1, 3; 1, 1, 2, 2, 0, 2, 0, 0, 0, 0, 0, 4; 1, 1, 2, 0, 0, 2; 1, 3, 0, 4; T(15,2)=3 because the elements 4, 11, and 14 have order 2 in the modulo multiplication group (Z/15Z)*. We observe that 4^2, 11^2, and 14^2 are congruent to 1 mod 15.
Links
- Alois P. Heinz, Rows n = 1..250, flattened
- Eric Weisstein's World of Mathematics, Modulo Multiplication Group.
Programs
-
Maple
with(numtheory): T:= n-> `if`(n=1, 1, (p-> seq(coeff(p, x, j), j=1..degree(p)))( add(`if`(igcd(n, i)>1, 0, x^order(i, n)), i=1..n-1))): seq(T(n), n=1..30); # Alois P. Heinz, Dec 30 2014
-
Mathematica
Table[Table[ Count[Table[ MultiplicativeOrder[a, n], {a, Select[Range[n], GCD[#, n] == 1 &]}], k], {k, 1, CarmichaelLambda[n]}], {n, 1, 20}] // Grid
Comments