A253027 Smallest odd number k>1 such that k*2^A000043(n)+1 is a prime number.
3, 5, 3, 5, 5, 9, 11, 35, 53, 51, 105, 5, 233, 347, 125, 369, 2063, 89, 4715, 1145, 885, 4839, 2711, 30611, 5859, 2543, 21509, 114071, 309, 60191, 524489, 33305, 306363, 987537, 509765
Offset: 1
Examples
3*2^2+1=13 prime so a(1)=3 as A000043(1)=2. 3*2^3+1=25 composite, 5*2^3+1=41 prime so a(2)=5 as A000043(2)=3. 3*2^5+1=97 prime so a(3)=3 as A000043(3)=5.
Programs
-
Mathematica
a253027[n_] := Block[{k, t = Select[Prime[Range[n]], PrimeQ[2^# - 1] &], l}, l = Length[t]; Table[k = 3; While[! PrimeQ[k*2^t[[i]] + 1], k = k + 2]; k, {i, l}]]; a253027[600] (* Michael De Vlieger, Dec 26 2014 *)
-
PARI
lista(nn) = {forprime (n=1, nn, if (isprime(2^n-1), k=3; while (!isprime(k*2^n+1), k += 2); print1(k, ", ");););} \\ Michel Marcus, Dec 27 2014
-
PFGW
Command pfgw64 -f -e1000000 in.txt in.txt file : ABC2 a$*2^756839+$b // {number_primes,$b,1} b: from 1 to 1 a: from 1 to 1000000
Extensions
a(33)-a(35) from Pierre CAMI, Apr 06 2015