cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A087206 a(n) = 2*a(n-1) + 4*a(n-2); with a(0)=1, a(1)=4.

Original entry on oeis.org

1, 4, 12, 40, 128, 416, 1344, 4352, 14080, 45568, 147456, 477184, 1544192, 4997120, 16171008, 52330496, 169345024, 548012032, 1773404160, 5738856448, 18571329536, 60098084864, 194481487872, 629355315200, 2036636581888
Offset: 0

Views

Author

Paul Barry, Aug 25 2003

Keywords

Comments

Binomial transform of A056487. Unsigned version of A152174.
Number of words of length n over the alphabet {1,2,3,4} such that no odd letter is followed by an odd letter. - Armend Shabani, Feb 18 2017
From Sean A. Irvine, Jun 06 2025: (Start)
Also, the number of walks of length n starting at 0 in the following graph:
1---2
|\ /|
| 0 |
|/ \|
4---3. (End)

Crossrefs

Equals (1/2) * A063727(n-1). Cf. A006483.

Programs

Formula

G.f.: (1+2x)/(1-2x-4x^2).
a(n) = (1-sqrt(5))^n*(1/2-3*sqrt(5)/10)+(1+sqrt(5))^n*(1/2+3*sqrt(5)/10).
a(n) = 2^n*Fibonacci(n+2). - Paul Barry, Mar 22 2004
a(n) = ((1+sqrt(5))^n-(1-sqrt(5))^n)/sqrt(80). Offset 2. a(4)=12. - Al Hakanson (hawkuu(AT)gmail.com), Apr 11 2009
G.f.: 1/(-2x-1/(-2x-1)). - Paul Barry, Mar 24 2010

Extensions

Comment corrected by Philippe Deléham, Nov 27 2008

A253065 Number of odd terms in f^n, where f = 1+x+x^2+x^2*y+x^2/y.

Original entry on oeis.org

1, 5, 5, 17, 5, 25, 17, 65, 5, 25, 25, 85, 17, 85, 65, 229, 5, 25, 25, 85, 25, 125, 85, 325, 17, 85, 85, 289, 65, 325, 229, 813, 5, 25, 25, 85, 25, 125, 85, 325, 25, 125, 125, 425, 85, 425, 325, 1145, 17, 85, 85, 289, 85, 425, 289, 1105, 65, 325, 325, 1105, 229, 1145, 813, 2945, 5, 25, 25, 85
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 171 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[0, 0, X]
[X, X, X]
[0, 0, X]
which contains a(1) = 5 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253066.
Cf. A253067.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1+x+x^2+x^2*y+x^2/y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253067 *) f[0]=1; f[1]=5; f[2]=17; f[3]=65; f[4]=229; f[5]=813; f[n_] := f[n] = 8 f[n-5] + 6 f[n-4] + 13 f[n-3] + 5 f[n-2] + f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 67}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253067.

A253066 Number of odd terms in f^n, where f = 1/x+1+x+1/y+y/x+x*y.

Original entry on oeis.org

1, 6, 6, 28, 6, 36, 28, 112, 6, 36, 36, 168, 28, 168, 112, 456, 6, 36, 36, 168, 36, 216, 168, 672, 28, 168, 168, 784, 112, 672, 456, 1816, 6, 36, 36, 168, 36, 216, 168, 672, 36, 216, 216, 1008, 168, 1008, 672, 2736, 28, 168, 168, 784, 168, 1008, 784, 3136, 112, 672, 672, 3136, 456, 2736, 1816, 7288
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 275 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[X, 0, X]
[X, X, X]
[0, X, 0]
which contains a(1) = 6 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253065.
Cf. A253068.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x+1+x+1/y+y/x+x*y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253068 *) f[0] = 1; f[n_] := ((-2)^n + 4^(n+2)-8)/9; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1 &], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253068.

A253069 Number of odd terms in f^n, where f = 1/x+1+x+x/y+y/x+x*y.

Original entry on oeis.org

1, 6, 6, 22, 6, 36, 22, 82, 6, 36, 36, 132, 22, 132, 82, 302, 6, 36, 36, 132, 36, 216, 132, 492, 22, 132, 132, 484, 82, 492, 302, 1106, 6, 36, 36, 132, 36, 216, 132, 492, 36, 216, 216, 792, 132, 792, 492, 1812, 22, 132, 132, 484, 132, 792, 484, 1804, 82, 492, 492, 1804, 302, 1812, 1106, 4066
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 175 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[X, 0, X]
[X, X, X]
[0, 0, X]
which contains a(1) = 6 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253065, A253066.
Cf. A253070.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x+1+x+x/y+y/x+x*y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253070 *) f[0]=1; f[1]=6; f[2]=22; f[3]=82; f[4]=302; f[5]=1106;f[6]=4066; f[n_] := f[n] = 8 f[n-4] + 8 f[n-3] + 3 f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253070.

A253071 Number of odd terms in f^n, where f = 1/(x*y)+1/x+1/y+y+x/y+x+x*y.

Original entry on oeis.org

1, 7, 7, 21, 7, 49, 21, 95, 7, 49, 49, 147, 21, 147, 95, 333, 7, 49, 49, 147, 49, 343, 147, 665, 21, 147, 147, 441, 95, 665, 333, 1319, 7, 49, 49, 147, 49, 343, 147, 665, 49, 343, 343, 1029, 147, 1029, 665, 2331, 21, 147, 147, 441, 147, 1029, 441, 1995, 95, 665, 665, 1995, 333, 2331, 1319, 4837
Offset: 0

Views

Author

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 357 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[0, X, X]
[X, 0, X]
[X, X, X]
which contains a(1) = 7 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253065, A253066, A252069.
Cf. A253072.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/(x*y)+1/x+1/y+y+x/y+x+x*y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253072 *) f[0]=1; f[1]=7; f[2]=21; f[3]=95; f[4]=333; f[5]=1319; f[n_] := f[n] = -8 f[n-5] + 44 f[n-4] - 24 f[n-3] - 5 f[n-2] + 6 f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253072.
Showing 1-5 of 5 results.