1, 5, 5, 17, 5, 25, 17, 61, 5, 25, 25, 85, 17, 85, 61, 217, 5, 25, 25, 85, 25, 125, 85, 305, 17, 85, 85, 289, 61, 305, 217, 773, 5, 25, 25, 85, 25, 125, 85, 305, 25, 125, 125, 425, 85, 425, 305, 1085, 17, 85, 85, 289, 85, 425, 289, 1037, 61, 305, 305, 1037, 217, 1085, 773, 2753
Offset: 0
To illustrate a(0) = 1, a(1) = 5, a(2) = 5, a(3) = 17:
......................0
.............0.......000
.......0............0...0
.0....000..0.0.0...00.0.00
.......0............0...0
.............0.......000
......................0
From _Omar E. Pol_, Jan 29 2015: (Start)
May be arranged into blocks of sizes A011782:
1;
5;
5,17;
5,25,17,61;
5,25,25,85,17,85,61,217;
5,25,25,85,25,125,85,305,17,85,85,289,61,305,217,773;
5,25,25,85,25,125,85,305,25,125,125,425,85,425,305,1085,17,85,85,289,85,425,289,1037,
61,305,305,1037,217,1085,773,2753;
So the right border gives A007483.
(End)
From _Omar E. Pol_, Mar 19 2015: (Start)
Also, the sequence can be written as an irregular tetrahedron T(s,r,k) as shown below:
1;
.....
5;
.....
5;
17;
...........
5, 25;
17;
61;
......................
5, 25, 25, 85;
17, 85;
61;
217;
...........................................
5, 25, 25, 85, 25, 125, 85, 305;
17, 85, 85, 289;
61, 305;
217;
773;
..................................................................................
5, 25, 25, 85, 25, 125, 85, 305, 25, 125, 125, 425, 85, 425, 305, 1085;
17, 85, 85, 289, 85, 425, 289, 1037;
61, 305, 305, 1037;
217, 1085;
773;
2753;
...
Apart from the initial 1, we have that T(s,r,k) = T(s+1,r,k).
It appears that the configuration of ON cells of T(s,r,k) is of the same kind as the configuration of ON cells of T(s+1,r,k).
(End)
Comments