Original entry on oeis.org
1, 6, 11, 28, 33, 58, 75, 136, 141, 166, 191, 276, 293, 378, 439, 656, 661, 686, 711, 796, 821, 946, 1031, 1336, 1353, 1438, 1523, 1812, 1873, 2178, 2395, 3168, 3173, 3198, 3223, 3308, 3333, 3458, 3543, 3848, 3873, 3998, 4123, 4548, 4633, 5058, 5363, 6448, 6465, 6550, 6635, 6924, 7009, 7434, 7723, 8760, 8821, 9126, 9431, 10468
Offset: 0
Original entry on oeis.org
4, 0, 12, -12, 20, -8, 44, -56, 20, 0, 60, -68, 68, -24, 156, -212, 20, 0, 60, -60, 100, -40, 220, -288, 68, 0, 204, -228, 244, -88, 556, -768, 20, 0, 60, -60, 100, -40, 220, -280, 100, 0, 300, -340, 340, -120, 780, -1068, 68, 0, 204, -204, 340, -136, 748, -976, 244, 0, 732, -820, 868, -312, 1980, -2748
Offset: 0
A007483
a(n) = 3*a(n-1) + 2*a(n-2), with a(0)=1, a(1)=5.
Original entry on oeis.org
1, 5, 17, 61, 217, 773, 2753, 9805, 34921, 124373, 442961, 1577629, 5618809, 20011685, 71272673, 253841389, 904069513, 3219891317, 11467812977, 40843221565, 145465290649, 518082315077, 1845177526529, 6571697209741, 23405446682281, 83359734466325, 296890096763537
Offset: 0
a(2) = 17 = (8, 4, 1) dot (1, 1, 5) = 8 + 4 + 5. - _Gary W. Adamson_, Aug 06 2016
From _Feryal Alayont_, Dec 08 2023: (Start)
a(2) counts the edge covers of F(1,3) with a pendant attached at the vertex of degree 3. This is the graph:
* -- *
/ | \
/ | \
*---*---*
An edge cover is a subset of the edges where each vertex is an endpoint of at least one edge. We show a one-to-one correspondence between subsequences of [1,...,5] and edge covers. Label edges connecting the top left vertex to the bottom vertices with odd numbers, 1, 3, 5, left to right. Label bottom edges with 2 (left) and 4 (right). An odd number in the subsequence means that edge is not in the edge cover. An even number means that edge is in. All bottom vertices are covered because if an odd edge is missing, an even edge covers the vertex attached to that odd. The pendant edge must be in every cover, so that edge covers both top vertices. (End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- C. Bautista-Ramos and C. Guillen-Galvan, Fibonacci numbers of generalized Zykov sums, J. Integer Seq., 15 (2012), Article 12.7.8.
- A. Burstein, S. Kitaev, and T. Mansour, Independent sets in certain classes of (almost) regular graphs, arXiv:math/0310379 [math.CO], 2003.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- R. K. Guy and William O. J. Moser, Numbers of subsequences without isolated odd members, Fibonacci Quarterly, 34, No. 2, 152-155 (1996). Math. Rev. 97d:11017.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for linear recurrences with constant coefficients, signature (3,2).
-
a007483 n = a007483_list !! n
a007483_list = 1 : 5 : zipWith (+)
(map (* 3) $ tail a007483_list) (map (* 2) a007483_list)
-- Reinhard Zumkeller, Nov 02 2015
-
[Floor((3/2+Sqrt(17)/2)^n*(1/2+7*Sqrt(17)/34)+(1/2-7*Sqrt(17)/34)*(3/2-Sqrt(17)/2)^n)+1: n in [0..30]]; // Vincenzo Librandi, Jul 09 2011
-
LinearRecurrence[{3, 2}, {1, 5}, 24] (* Jean-François Alcover, Sep 26 2017 *)
a[0]=1;a[1]=5;a[n_]:= a[n]= 3*a[n-1]+2*a[n-2];Table[a[n],{n,0,23}] (* James C. McMahon, Dec 17 2023 *)
-
a(n)=([1,2;2,2]^n*[1,2]~*[1,2])[1,1] \\ Charles R Greathouse IV, Jul 10 2011
-
@CachedFunction
def a(n): return 5^n if (n<2) else 3*a(n-1) + 2*a(n-2)
[a(n) for n in (0..40)] # G. C. Greubel, Jun 28 2021
A246035
Number of odd terms in f^n, where f = (1/x+1+x)*(1/y+1+y).
Original entry on oeis.org
1, 9, 9, 25, 9, 81, 25, 121, 9, 81, 81, 225, 25, 225, 121, 441, 9, 81, 81, 225, 81, 729, 225, 1089, 25, 225, 225, 625, 121, 1089, 441, 1849, 9, 81, 81, 225, 81, 729, 225, 1089, 81, 729, 729, 2025, 225, 2025, 1089, 3969, 25, 225, 225, 625, 225, 2025, 625, 3025, 121, 1089, 1089, 3025, 441, 3969, 1849, 7225, 9, 81, 81, 225, 81, 729, 225
Offset: 0
Here is the neighborhood:
[X, X, X]
[X, X, X]
[X, X, X]
which contains a(1) = 9 ON cells.
.
From Omar E. Pol, Mar 17 2015: (Start)
Apart from the initial 1, the sequence can be written also as an irregular tetrahedron T(s,r,k) = A139818(r+2) * a(k), s>=1, 1<=r<=s, 0<=k<=(A011782(s-r)-1) as shown below:
..
9;
...
9;
25;
..........
9, 81;
25;
121;
....................
9, 81, 81, 225;
25, 225;
121;
441;
........................................
9, 81, 81, 225, 81, 729, 225, 1089;
25, 225, 225, 625;
121, 1089;
441;
1849;
...
Note that every row r is equal to A139818(r+2) times the beginning of the sequence itself, thus in 3D every column contains the same number: T(s,r,k) = T(s+1,r,k).
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..8192
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
-
C:=f->subs({x=1, y=1}, f);
# Find number of ON cells in CA for generations 0 thru M defined by rule
# that cell is ON iff number of ON cells in nbd at time n-1 was odd
# where nbd is defined by a polynomial or Laurent series f(x, y).
OddCA:=proc(f, M) global C; local n, a, i, f2, p;
f2:=simplify(expand(f)) mod 2;
a:=[]; p:=1;
for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
lprint([seq(a[i], i=1..nops(a))]);
end;
f:=(1/x+1+x)*(1/y+1+y);
OddCA(f, 70);
-
b[0] = 1; b[n_] := b[n] = Expand[b[n - 1]*(x^2 + x + 1)];
a[n_] := Count[CoefficientList[b[n], x], _?OddQ]^2;
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Apr 30 2017 *)
A246034
Number of odd terms in f^n, where f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1.
Original entry on oeis.org
1, 21, 21, 85, 21, 233, 85, 321, 21, 441, 233, 761, 85, 1137, 321, 1545, 21, 441, 441, 1785, 233, 2925, 761, 3589, 85, 1785, 1137, 3977, 321, 4549, 1545, 5909, 21, 441, 441, 1785, 441, 4893, 1785, 6741, 233, 4893, 2925, 9949, 761, 11301, 3589, 13181, 85, 1785, 1785
Offset: 0
Here is the neighborhood:
[X, X, X, X, X]
[X, 0, X, 0, X]
[X, X, X, X, X]
[X, 0, X, 0, X]
[X, X, X, X, X]
which contains a(1) = 21 ON cells.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
-
C:=f->subs({x=1, y=1}, f);
# Find number of ON cells in CA for generations 0 thru M defined by rule
# that cell is ON iff number of ON cells in nbd at time n-1 was odd
# where nbd is defined by a polynomial or Laurent series f(x, y).
OddCA:=proc(f, M) global C; local n, a, i, f2, p;
f2:=simplify(expand(f)) mod 2;
a:=[]; p:=1;
for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
lprint([seq(a[i], i=1..nops(a))]);
end;
f:=x^4*y^4+x^4*y^3+x^3*y^4+x^4*y^2+x^2*y^4+x^4*y+x^3*y^2+x^2*y^3+x*y^4+x^4+
x^2*y^2+y^4+x^3+x^2*y+x*y^2+y^3+x^2+y^2+x+y+1;
OddCA(f, 100);
-
f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1;
a[0] = 1; a[n_] := Count[List @@ Expand[f^n] /. {x -> 1, y -> 1}, _?OddQ];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2017 *)
A255294
Number of 2's in expansion of F^n mod 3, where F = 1/x+2+x+1/y+y.
Original entry on oeis.org
0, 1, 5, 1, 8, 20, 5, 28, 64, 1, 8, 28, 8, 49, 101, 20, 109, 241, 5, 28, 80, 28, 149, 289, 64, 305, 437, 1, 8, 28, 8, 49, 109, 28, 149, 305, 8, 49, 149, 49, 272, 524, 101, 532, 1096, 20, 109, 305, 109, 572, 1096, 241, 1160
Offset: 0
The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 1], [8, 5], [4, 1], [17, 8], [29, 20], [8, 5], [37, 28], [49, 64], [4, 1], [17, 8], [37, 28], [17, 8], [76, 49], [128, 101], [29, 20], [136, 109], [196, 241], [8, 5], [37, 28], [89, 80], [37, 28], [176, 149], [292, 289], [49, 64], [260, 305], [584, 437], [4, 1], [17, 8], [37, 28], ...
-
# C3 Counts 1's and 2's
C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2,x,ix),y,iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);
fi;
end;
F4:=1/x+2+x+1/y+y mod 3;
g:=(F,n)->expand(F^n) mod 3;
[seq(C3(g(F4,n))[2],n=0..60)];
A253064
Number of odd terms in f^n, where f = 1/x + 1 + x + y.
Original entry on oeis.org
1, 4, 4, 12, 4, 16, 12, 40, 4, 16, 16, 48, 12, 48, 40, 128, 4, 16, 16, 48, 16, 64, 48, 160, 12, 48, 48, 144, 40, 160, 128, 416, 4, 16, 16, 48, 16, 64, 48, 160, 16, 64, 64, 192, 48, 192, 160, 512, 12, 48, 48, 144, 48, 192, 144, 480, 40, 160, 160, 480, 128, 512, 416
Offset: 0
Here is the neighborhood f:
[0, X, 0]
[X, X, X]
which contains a(1) = 4 ON cells.
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
- Po-Yi Huang and Wen-Fong Ke, Sequences Derived from The Symmetric Powers of {1,2,...,k}, arXiv:2307.07733 [math.CO], 2023.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
- Index entries for sequences related to cellular automata
-
C:=f->subs({x=1, y=1}, f);
# Find number of ON cells in CA for generations 0 thru M defined by rule
# that cell is ON iff number of ON cells in nbd at time n-1 was odd
# where nbd is defined by a polynomial or Laurent series f(x, y).
OddCA:=proc(f, M) global C; local n, a, i, f2, p;
f2:=simplify(expand(f)) mod 2;
a:=[]; p:=1;
for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
lprint([seq(a[i], i=1..nops(a))]);
end;
f:=1/x+1+x+y;
OddCA(f, 130);
-
f[n_] := 2^n*Fibonacci[n+2]; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 62}] (* Jean-François Alcover, Jul 11 2017 *)
A253065
Number of odd terms in f^n, where f = 1+x+x^2+x^2*y+x^2/y.
Original entry on oeis.org
1, 5, 5, 17, 5, 25, 17, 65, 5, 25, 25, 85, 17, 85, 65, 229, 5, 25, 25, 85, 25, 125, 85, 325, 17, 85, 85, 289, 65, 325, 229, 813, 5, 25, 25, 85, 25, 125, 85, 325, 25, 125, 125, 425, 85, 425, 325, 1145, 17, 85, 85, 289, 85, 425, 289, 1105, 65, 325, 325, 1105, 229, 1145, 813, 2945, 5, 25, 25, 85
Offset: 0
Here is the neighborhood f:
[0, 0, X]
[X, X, X]
[0, 0, X]
which contains a(1) = 5 ON cells.
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
-
C:=f->subs({x=1, y=1}, f);
# Find number of ON cells in CA for generations 0 thru M defined by rule
# that cell is ON iff number of ON cells in nbd at time n-1 was odd
# where nbd is defined by a polynomial or Laurent series f(x, y).
OddCA:=proc(f, M) global C; local n, a, i, f2, p;
f2:=simplify(expand(f)) mod 2;
a:=[]; p:=1;
for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
lprint([seq(a[i], i=1..nops(a))]);
end;
f:=1+x+x^2+x^2*y+x^2/y;
OddCA(f, 130);
-
(* f = A253067 *) f[0]=1; f[1]=5; f[2]=17; f[3]=65; f[4]=229; f[5]=813; f[n_] := f[n] = 8 f[n-5] + 6 f[n-4] + 13 f[n-3] + 5 f[n-2] + f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 67}] (* Jean-François Alcover, Jul 12 2017 *)
A253066
Number of odd terms in f^n, where f = 1/x+1+x+1/y+y/x+x*y.
Original entry on oeis.org
1, 6, 6, 28, 6, 36, 28, 112, 6, 36, 36, 168, 28, 168, 112, 456, 6, 36, 36, 168, 36, 216, 168, 672, 28, 168, 168, 784, 112, 672, 456, 1816, 6, 36, 36, 168, 36, 216, 168, 672, 36, 216, 216, 1008, 168, 1008, 672, 2736, 28, 168, 168, 784, 168, 1008, 784, 3136, 112, 672, 672, 3136, 456, 2736, 1816, 7288
Offset: 0
Here is the neighborhood f:
[X, 0, X]
[X, X, X]
[0, X, 0]
which contains a(1) = 6 ON cells.
- Alois P. Heinz, Table of n, a(n) for n = 0..8191
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Index entries for sequences related to cellular automata
-
C:=f->subs({x=1, y=1}, f);
# Find number of ON cells in CA for generations 0 thru M defined by rule
# that cell is ON iff number of ON cells in nbd at time n-1 was odd
# where nbd is defined by a polynomial or Laurent series f(x, y).
OddCA:=proc(f, M) global C; local n, a, i, f2, p;
f2:=simplify(expand(f)) mod 2;
a:=[]; p:=1;
for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
lprint([seq(a[i], i=1..nops(a))]);
end;
f:=1/x+1+x+1/y+y/x+x*y;
OddCA(f, 130);
-
(* f = A253068 *) f[0] = 1; f[n_] := ((-2)^n + 4^(n+2)-8)/9; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1 &], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)
A164982
Number of ON cells after n generations of the 2D cellular automaton described in the comments.
Original entry on oeis.org
1, 3, 4, 12, 7, 21, 16, 40, 22, 42, 34, 67, 52, 85, 70, 125, 94, 126, 102, 150, 118, 172, 177, 234, 209, 240, 238, 319, 285, 363, 378, 458, 383, 444, 404, 493, 474, 520, 529, 628, 583, 602, 622, 727, 664, 816, 835, 948, 873, 926, 952, 1065, 1010, 1090, 1187
Offset: 1
-
RasterGraphics[state_?MatrixQ, colors_Integer : 2, opts___] := Graphics[Raster[Reverse[1 - state/(colors - 1)]], AspectRatio -> (AspectRatio /. {opts} /. AspectRatio -> Automatic), Frame -> True, FrameTicks -> None, GridLines -> None];
rule=61986;
Show[GraphicsArray[Map[RasterGraphics, CellularAutomaton[{rule, {2, {{1, 4, 1}, {0, 0, 0}, {4, 1, 4}}}, {1, 1}}, {{{1}}, 0}, 4, -5]]]];
ca = CellularAutomaton[{rule, {2, {{1, 4, 1}, {0, 0, 0}, {4, 1, 4}}}, {1, 1}}, {{{1}}, 0}, 99, -100];
Table[Total[ca[[i]], 2], {i, 1, 100}]
Showing 1-10 of 24 results.
Comments