cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A071053 Number of ON cells at n-th generation of 1-D CA defined by Rule 150, starting with a single ON cell at generation 0.

Original entry on oeis.org

1, 3, 3, 5, 3, 9, 5, 11, 3, 9, 9, 15, 5, 15, 11, 21, 3, 9, 9, 15, 9, 27, 15, 33, 5, 15, 15, 25, 11, 33, 21, 43, 3, 9, 9, 15, 9, 27, 15, 33, 9, 27, 27, 45, 15, 45, 33, 63, 5, 15, 15, 25, 15, 45, 25, 55, 11, 33, 33, 55, 21, 63, 43, 85, 3, 9, 9, 15, 9, 27, 15, 33, 9, 27, 27
Offset: 0

Views

Author

Hans Havermann, May 26 2002

Keywords

Comments

Number of 1's in n-th row of triangle in A071036.
Number of odd coefficients in (x^2+x+1)^n. - Benoit Cloitre, Sep 05 2003. This result was given in Wolfram (1983). - N. J. A. Sloane, Feb 17 2015
This is also the odd-rule cellular automaton defined by OddRule 007 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015
This is the Run Length Transform of S(n) = Jacobsthal(n+2) (cf. A001045). The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g., 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product). - N. J. A. Sloane, Sep 05 2014

Examples

			May be arranged into blocks of sizes 1,1,2,4,8,16,...:
1,
3,
3, 5,
3, 9, 5, 11,
3, 9, 9, 15, 5, 15, 11, 21,
3, 9, 9, 15, 9, 27, 15, 33, 5, 15, 15, 25, 11, 33, 21, 43,
3, 9, 9, 15, 9, 27, 15, 33, 9, 27, 27, 45, 15, 45, 33, 63, 5, 15, 15, 25, 15, 45, 25, 55, 11, 33, 33, 55, 21, 63, 43, 85,
3, 9, 9, 15, 9, 27, 15, 33, 9, 27, 27, ...
... - _N. J. A. Sloane_, Sep 05 2014
.
From _Omar E. Pol_, Mar 15 2015: (Start)
Apart from the initial 1, the sequence can be written also as an irregular tetrahedron T(s,r,k) = A001045(r+2) * a(k), s>=1, 1<=r<=s, 0<=k<=(A011782(s-r)-1) as shown below (see also _Joerg Arndt_'s equivalent program):
3;
..
3;
5;
.......
3,   9;
5;
11;
...............
3,   9,  9, 15;
5,  15;
11;
21;
...............................
3,   9,  9, 15,  9, 27, 15, 33;
5,  15, 15, 25;
11, 33;
21;
43;
..............................................................
3,   9,  9, 15,  9, 27, 15, 33, 9, 27, 27, 45, 15, 45, 33, 63;
5,  15, 15, 25, 15, 45, 25, 55;
11, 33, 33, 55;
21, 63;
43;
85;
...
Note that every row r is equal to A001045(r+2) times the beginning of the sequence itself, thus in 3D every column contains the same number.
(End)
		

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.

Crossrefs

Programs

  • Mathematica
    a[n_] := Total[CoefficientList[(x^2 + x + 1)^n, x, Modulus -> 2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 05 2018 *)
  • PARI
    b(n) = { (2^n - (-1)^n) / 3; }  \\ A001045
    a(n)=
    {
        if ( n==0, return(1) );
        \\ Use  a( 2^k * t ) = a(t)
        n \= 2^valuation(n,2);
        if ( n==1, return(3) );  \\ Use a(2^k) == 3
        \\ now n is odd
        my ( v1 = valuation(n+1, 2) );
        \\ Use a( 2^k - 1 ) = A001045( 2 + k ):
        if ( n == 2^v1 - 1 ,  return( b( v1 + 2 ) ) );
        my( k2 = 1, k = 0 );
        while ( k2 < n,  k2 <<= 1; k+=1 );
        if ( k2 > n, k2 >>= 1; k-=1 );
        my( t = n - k2 );
        \\ here  n == 2^k + 1 where k maximal
        \\ Use the following:
        \\ a( 2^k + t ) =  3 * a(t)  if  t <= 2^(k-1)
        \\ a( 2^k + 2^(k-1) + t ) =  5 * a(t)  if  t <= 2^(k-2)
        \\ a( 2^k + 2^(k-1) + 2^(k-2) + t ) =  11* a(t)  if  t <= 2^(k-3)
        \\  ... etc. ...
        \\ a( 2^k + ... + 2^(k-s) + t ) = A001045(s+2) * a(t)  if  t <= 2^((k-1)-s)
        my ( s=1 );
        while ( 1 ,
            k2 >>= 1;
            if ( t <= k2 ,  return(  b(s+2) * a(t) ) );
            t -= k2;
            s += 1;
        );
    }
    \\ Joerg Arndt, Mar 15 2015, from SeqFan Mailing List, Mar 09 2015

Formula

a(n) = Product_{i in row n of A245562} A001045(i+2) [Sillke]. For example, a(11) = A001045(3)*A001045(4) = 3*5 = 15. - N. J. A. Sloane, Aug 10 2014
Floor((a(n)-1)/4) mod 2 = A020987(n). - Ralf Stephan, Mar 18 2004
a(2*n) = a(n); a(2*n+1) = a(n) + 2*a(floor(n/2)). - Peter J. Taylor, Mar 26 2020
Sum_{k = 0..2^n-1} a(k) = A087206(n). - Linhua Zou, Jun 13 2025

Extensions

Entry revised by N. J. A. Sloane, Aug 13 2014

A139818 Squares of Jacobsthal numbers.

Original entry on oeis.org

0, 1, 1, 9, 25, 121, 441, 1849, 7225, 29241, 116281, 466489, 1863225, 7458361, 29822521, 119311929, 477204025, 1908903481, 7635439161, 30542106169, 122167725625, 488672300601, 1954686406201, 7818751217209, 31274993684025
Offset: 0

Views

Author

Paul Curtz, May 17 2008

Keywords

Comments

Run length transform gives A246035. - N. J. A. Sloane, Feb 26 2015

Crossrefs

Cf. A001045, A246035. First differences give (apart from signs) A083086.

Programs

  • Magma
    [1/9-(2/9)*(-2)^n+(1/9)*4^n: n in [0..35]]; // Vincenzo Librandi, Aug 09 2011
    
  • Mathematica
    LinearRecurrence[{3, 6, -8}, {0, 1, 1}, 25] (* Jean-François Alcover, Jan 09 2019 *)
  • PARI
    concat (0, Vec(x*(1-2*x)/((1-x)*(1+2*x)*(1-4*x)) + O(x^30))) \\ Michel Marcus, Mar 04 2015

Formula

a(n) = 3*a(n-1) + 6*a(n-2) - 8*a(n-3).
a(n) = (A001045(n))^2.
G.f.: x*(1-2*x)/((1-x)*(1+2*x)*(1-4*x)).

Extensions

More terms from R. J. Mathar, Dec 12 2009

A246034 Number of odd terms in f^n, where f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1.

Original entry on oeis.org

1, 21, 21, 85, 21, 233, 85, 321, 21, 441, 233, 761, 85, 1137, 321, 1545, 21, 441, 441, 1785, 233, 2925, 761, 3589, 85, 1785, 1137, 3977, 321, 4549, 1545, 5909, 21, 441, 441, 1785, 441, 4893, 1785, 6741, 233, 4893, 2925, 9949, 761, 11301, 3589, 13181, 85, 1785, 1785
Offset: 0

Views

Author

N. J. A. Sloane, Aug 20 2014

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.

Examples

			Here is the neighborhood:
[X, X, X, X, X]
[X, 0, X, 0, X]
[X, X, X, X, X]
[X, 0, X, 0, X]
[X, X, X, X, X]
which contains a(1) = 21 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246035.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=x^4*y^4+x^4*y^3+x^3*y^4+x^4*y^2+x^2*y^4+x^4*y+x^3*y^2+x^2*y^3+x*y^4+x^4+
       x^2*y^2+y^4+x^3+x^2*y+x*y^2+y^3+x^2+y^2+x+y+1;
    OddCA(f, 100);
  • Mathematica
    f = x^4*y^4 + x^4*y^3 + x^3*y^4 + x^4*y^2 + x^2*y^4 + x^4*y + x^3*y^2 + x^2*y^3 + x*y^4 + x^4 + x^2*y^2 + y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + y^2 + x + y + 1;
    a[0] = 1; a[n_] := Count[List @@ Expand[f^n] /. {x -> 1, y -> 1}, _?OddQ];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2017 *)

A253064 Number of odd terms in f^n, where f = 1/x + 1 + x + y.

Original entry on oeis.org

1, 4, 4, 12, 4, 16, 12, 40, 4, 16, 16, 48, 12, 48, 40, 128, 4, 16, 16, 48, 16, 64, 48, 160, 12, 48, 48, 144, 40, 160, 128, 416, 4, 16, 16, 48, 16, 64, 48, 160, 16, 64, 64, 192, 48, 192, 160, 512, 12, 48, 48, 144, 48, 192, 144, 480, 40, 160, 160, 480, 128, 512, 416
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 017 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link). - N. J. A. Sloane, Feb 25 2015

Examples

			Here is the neighborhood f:
[0, X, 0]
[X, X, X]
which contains a(1) = 4 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035.
Cf. A087206.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x+1+x+y;
    OddCA(f, 130);
  • Mathematica
    f[n_] := 2^n*Fibonacci[n+2]; Table[Times @@ (f[Length[#]]&) /@ Select[ Split[ IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 62}] (* Jean-François Alcover, Jul 11 2017 *)

Formula

This is the Run Length Transform of A087206.

A253065 Number of odd terms in f^n, where f = 1+x+x^2+x^2*y+x^2/y.

Original entry on oeis.org

1, 5, 5, 17, 5, 25, 17, 65, 5, 25, 25, 85, 17, 85, 65, 229, 5, 25, 25, 85, 25, 125, 85, 325, 17, 85, 85, 289, 65, 325, 229, 813, 5, 25, 25, 85, 25, 125, 85, 325, 25, 125, 125, 425, 85, 425, 325, 1145, 17, 85, 85, 289, 85, 425, 289, 1105, 65, 325, 325, 1105, 229, 1145, 813, 2945, 5, 25, 25, 85
Offset: 0

Views

Author

N. J. A. Sloane, Jan 26 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 171 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[0, 0, X]
[X, X, X]
[0, 0, X]
which contains a(1) = 5 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253066.
Cf. A253067.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1+x+x^2+x^2*y+x^2/y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253067 *) f[0]=1; f[1]=5; f[2]=17; f[3]=65; f[4]=229; f[5]=813; f[n_] := f[n] = 8 f[n-5] + 6 f[n-4] + 13 f[n-3] + 5 f[n-2] + f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 67}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253067.

A253066 Number of odd terms in f^n, where f = 1/x+1+x+1/y+y/x+x*y.

Original entry on oeis.org

1, 6, 6, 28, 6, 36, 28, 112, 6, 36, 36, 168, 28, 168, 112, 456, 6, 36, 36, 168, 36, 216, 168, 672, 28, 168, 168, 784, 112, 672, 456, 1816, 6, 36, 36, 168, 36, 216, 168, 672, 36, 216, 216, 1008, 168, 1008, 672, 2736, 28, 168, 168, 784, 168, 1008, 784, 3136, 112, 672, 672, 3136, 456, 2736, 1816, 7288
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 275 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[X, 0, X]
[X, X, X]
[0, X, 0]
which contains a(1) = 6 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253065.
Cf. A253068.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x+1+x+1/y+y/x+x*y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253068 *) f[0] = 1; f[n_] := ((-2)^n + 4^(n+2)-8)/9; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1 &], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253068.

A246037 Number of odd terms in f^n, where f = (1/x+1+x)*(1/y+y).

Original entry on oeis.org

1, 6, 6, 20, 6, 36, 20, 88, 6, 36, 36, 120, 20, 120, 88, 336, 6, 36, 36, 120, 36, 216, 120, 528, 20, 120, 120, 400, 88, 528, 336, 1376, 6, 36, 36, 120, 36, 216, 120, 528, 36, 216, 216, 720, 120, 720, 528, 2016, 20, 120, 120, 400, 120, 720, 400, 1760, 88, 528, 528, 1760, 336, 2016, 1376, 5440
Offset: 0

Views

Author

N. J. A. Sloane, Aug 21 2014

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 077 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).
Run Length Transform of A246036.
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			Here is the neighborhood:
[X, X, X]
[0, 0, 0]
[X, X, X]
which contains a(1) = 6 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035.
Cf. A246036.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=(1/x+1+x)*(1/y+y);
    OddCA(f, 70);
  • Mathematica
    (* f = A246036 *) f[0] = 1; f[n_] := (4^(n+1)-(-2)^n)/3; Table[Times @@ (f[Length[#]]&) /@ Select[s = Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

A246039 Number of odd terms in f^n, where f = (1/x+1+x)*(1/y+y)+1.

Original entry on oeis.org

1, 7, 7, 29, 7, 49, 29, 103, 7, 49, 49, 203, 29, 203, 103, 373, 7, 49, 49, 203, 49, 343, 203, 721, 29, 203, 203, 841, 103, 721, 373, 1407, 7, 49, 49, 203, 49, 343, 203, 721, 49, 343, 343, 1421, 203, 1421, 721, 2611, 29, 203, 203, 841, 203, 1421, 841, 2987, 103, 721, 721, 2987, 373, 2611, 1407, 5277
Offset: 0

Views

Author

N. J. A. Sloane, Aug 21 2014

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 575 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).
Run Length Transform of A246038.
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			Here is the neighborhood:
[X, X, X]
[0, X, 0]
[X, X, X]
which contains a(1) = 7 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035. A246037.
Cf. A246038.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=(1/x+1+x)*(1/y+y)+1 mod 2;
    OddCA(f, 70);
  • Mathematica
    (* f = A246038 *) f[0]=1; f[1]=7; f[2]=29; f[3]=103; f[4]=373; f[n_] := f[n] = 8 f[n-4] + 8 f[n-3] + 3 f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

A246314 Number of odd terms in f^n, where f = 1/x^2+1/x+1+x+x^2+1/y^2+1/y+y+y^2.

Original entry on oeis.org

1, 9, 9, 37, 9, 65, 37, 157, 9, 81, 65, 237, 37, 293, 157, 713, 9, 81, 81, 333, 65, 473, 237, 1077, 37, 333, 293, 1129, 157, 1285, 713, 2737, 9, 81, 81, 333, 81, 585, 333, 1413, 65, 585, 473, 1733, 237, 1933, 1077, 4337, 37, 333, 333, 1369, 293, 2125, 1129, 4969, 157, 1413, 1285, 5041, 713, 5561, 2737, 11421, 9, 81
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2014

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f (a cross containing 9 cells), and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.

Examples

			Here is the neighborhood:
[0, 0, X, 0, 0]
[0, 0, X, 0, 0]
[X, X, X, X, X]
[0, 0, X, 0, 0]
[0, 0, X, 0, 0]
which contains a(1) = 9 ON cells.
The second and third generations are:
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[X, 0, X, 0, X, 0, X, 0, X]  (again with 9 ON cells)
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, X, 0, X, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, X, 0, 0, X, X, X, 0, 0, X, 0, 0]
[0, 0, X, 0, X, 0, 0, 0, X, 0, X, 0, 0]
[X, X, 0, 0, X, 0, X, 0, X, 0, 0, X, X] (with 37 ON cells)
[0, 0, X, 0, X, 0, 0, 0, X, 0, X, 0, 0]
[0, 0, X, 0, 0, X, X, X, 0, 0, X, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, X, X, 0, X, X, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, X, 0, 0, 0, 0, 0, 0]
The terms can be arranged into blocks of sizes 1,1,2,4,8,16,32,...:
1,
9,
9, 37,
9, 65, 37, 157,
9, 81, 65, 237, 37, 293, 157, 713,
9, 81, 81, 333, 65, 473, 237, 1077, 37, 333, 293, 1129, 157, 1285, 713, 2737,
9, 81, 81, 333, 81, 585, 333, 1413, 65, 585, 473, 1733, 237, 1933, 1077, 4337, 37, 333, 333, 1369, 293, 2125, 1129, 4969, 157, 1413, 1285, 5041, 713, 5561, 2737, 11421, ...
The final terms in the rows are A246315.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A246037.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x^2+1/x+1+x+x^2+1/y^2+1/y+y+y^2;
    OddCA(f, 70);
  • Mathematica
    c[f_] := f /. {x -> 1, y -> 1};
    OddCA[f_, M_] := Module[{a = {}, f2, p = 1}, f2 = PolynomialMod[f, 2]; Do[ AppendTo[a, c[p]]; Print[a]; p = PolynomialMod[p f2, 2], {n, 0, M}]; a];
    f = 1/x^2 + 1/x + 1 + x + x^2 + 1/y^2 + 1/y + y + y^2;
    OddCA[f, 70] (* Jean-François Alcover, May 24 2020, after Maple *)

Formula

The values of a(n) for n in A247647 (or A247648) determine all the values, as follows. Parse the binary expansion of n into terms from A247647 separated by at least two zeros: m_1 0...0 m_2 0...0 m_3 ... m_r 0...0. Ignore any number (one or more) of trailing zeros. Then a(n) = a(m_1)*a(m_2)*...*a(m_r). For example, n = 37_10 = 100101_2 is parsed into 1.00.101, and so a(37) = a(1)*a(5) = 9*65 = 585. This is a generalization of the Run Length Transform.

A253069 Number of odd terms in f^n, where f = 1/x+1+x+x/y+y/x+x*y.

Original entry on oeis.org

1, 6, 6, 22, 6, 36, 22, 82, 6, 36, 36, 132, 22, 132, 82, 302, 6, 36, 36, 132, 36, 216, 132, 492, 22, 132, 132, 484, 82, 492, 302, 1106, 6, 36, 36, 132, 36, 216, 132, 492, 36, 216, 216, 792, 132, 792, 492, 1812, 22, 132, 132, 484, 132, 792, 484, 1804, 82, 492, 492, 1804, 302, 1812, 1106, 4066
Offset: 0

Views

Author

N. J. A. Sloane, Jan 29 2015

Keywords

Comments

This is the number of ON cells in a certain 2-D CA in which the neighborhood of a cell is defined by f, and in which a cell is ON iff there was an odd number of ON cells in the neighborhood at the previous generation.
This is the odd-rule cellular automaton defined by OddRule 175 (see Ekhad-Sloane-Zeilberger "Odd-Rule Cellular Automata on the Square Grid" link).

Examples

			Here is the neighborhood f:
[X, 0, X]
[X, X, X]
[0, 0, X]
which contains a(1) = 6 ON cells.
		

Crossrefs

Other CA's that use the same rule but with different cell neighborhoods: A160239, A102376, A071053, A072272, A001316, A246034, A246035, A253064, A253065, A253066.
Cf. A253070.

Programs

  • Maple
    C:=f->subs({x=1, y=1}, f);
    # Find number of ON cells in CA for generations 0 thru M defined by rule
    # that cell is ON iff number of ON cells in nbd at time n-1 was odd
    # where nbd is defined by a polynomial or Laurent series f(x, y).
    OddCA:=proc(f, M) global C; local n, a, i, f2, p;
    f2:=simplify(expand(f)) mod 2;
    a:=[]; p:=1;
    for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od:
    lprint([seq(a[i], i=1..nops(a))]);
    end;
    f:=1/x+1+x+x/y+y/x+x*y;
    OddCA(f, 130);
  • Mathematica
    (* f = A253070 *) f[0]=1; f[1]=6; f[2]=22; f[3]=82; f[4]=302; f[5]=1106;f[6]=4066; f[n_] := f[n] = 8 f[n-4] + 8 f[n-3] + 3 f[n-1]; Table[Times @@ (f[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)

Formula

This is the Run Length Transform of A253070.
Showing 1-10 of 13 results. Next