A253100 Number of odd terms in f^n, where f = 1/(x*y)+1/x+1/x*y+1/y+x+x*y.
1, 6, 6, 24, 6, 36, 24, 96, 6, 36, 36, 144, 24, 144, 96, 372, 6, 36, 36, 144, 36, 216, 144, 576, 24, 144, 144, 576, 96, 576, 372, 1416, 6, 36, 36, 144, 36, 216, 144, 576, 36, 216, 216, 864, 144, 864, 576, 2232, 24, 144, 144, 576, 144, 864, 576, 2304, 96, 576, 576, 2304, 372, 2232, 1416, 5340
Offset: 0
Keywords
Examples
Here is the neighborhood f: [X, 0, X] [X, 0, X] [X, X, 0] which contains a(1) = 6 ON cells.
Links
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.
- Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
- N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
- Index entries for sequences related to cellular automata
Programs
-
Maple
C:=f->subs({x=1, y=1}, f); # Find number of ON cells in CA for generations 0 thru M defined by rule # that cell is ON iff number of ON cells in nbd at time n-1 was odd # where nbd is defined by a polynomial or Laurent series f(x, y). OddCA:=proc(f, M) global C; local n, a, i, f2, p; f2:=simplify(expand(f)) mod 2; a:=[]; p:=1; for n from 0 to M do a:=[op(a), C(p)]; p:=expand(p*f2) mod 2; od: lprint([seq(a[i], i=1..nops(a))]); end; f:=1/(x*y)+1/x+1/x*y+1/y+x+x*y; OddCA(f, 130);
-
Mathematica
(* f = A253101 *) f[n_] := 2*(2-Sqrt[3])^n + 2*(2+Sqrt[3])^n - 2^n // Round; Table[Times @@ (f[Length[#]]&) /@ Select[Split[IntegerDigits[n, 2]], #[[1]] == 1&], {n, 0, 63}] (* Jean-François Alcover, Jul 12 2017 *)
Formula
This is the Run Length Transform of A253101.
Comments