cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253136 The number of overpartitions of n into parts congruent to 2, 4, or 5 modulo 6.

Original entry on oeis.org

1, 0, 2, 0, 4, 2, 6, 4, 10, 8, 18, 14, 28, 24, 44, 42, 68, 66, 102, 104, 154, 160, 226, 238, 330, 354, 476, 516, 676, 742, 958, 1056, 1342, 1486, 1862, 2076, 2568, 2872, 3516, 3940, 4782, 5370, 6464, 7268, 8686, 9774, 11606, 13070, 15428, 17380, 20408, 22986
Offset: 0

Views

Author

Jeremy Lovejoy, Mar 23 2015

Keywords

Crossrefs

Cf. A056970.

Programs

  • Maple
    series(mul((1+x^(6*k+2))*(1+x^(6*k+4))*(1+x^(6*k+5))/((1-x^(6*k+2))*(1-x^(6*k+4))*(1-x^(6*k+5))), k=0..100), x=0, 100);
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+
         `if`(irem(i, 6) in [2, 4, 5], add(2*b(n-i*j, i-1), j=1..n/i), 0)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 04 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[ MemberQ[{2, 4, 5}, Mod[i, 6]], Sum[2b[n - i j, i-1], {j, 1, n/i}], 0]]];
    a[n_] := b[n, n];
    a /@ Range[0, 60] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
    nmax = 60; CoefficientList[Series[Product[(1 + x^(6*k+2)) * (1 + x^(6*k+4)) * (1 + x^(6*k+5)) / ((1 - x^(6*k+2)) * (1 - x^(6*k+4)) * (1 - x^(6*k+5))), {k, 0, nmax/6}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)

Formula

a(n) ~ Pi^(5/6) * exp(Pi*sqrt(n/2)) / (2^(7/4) * 3^(1/6) * Gamma(1/6) * n^(11/12)). - Vaclav Kotesovec, Jan 14 2021