A253136 The number of overpartitions of n into parts congruent to 2, 4, or 5 modulo 6.
1, 0, 2, 0, 4, 2, 6, 4, 10, 8, 18, 14, 28, 24, 44, 42, 68, 66, 102, 104, 154, 160, 226, 238, 330, 354, 476, 516, 676, 742, 958, 1056, 1342, 1486, 1862, 2076, 2568, 2872, 3516, 3940, 4782, 5370, 6464, 7268, 8686, 9774, 11606, 13070, 15428, 17380, 20408, 22986
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- J. Lovejoy, A theorem on seven-colored overpartitions and its applications, Int. J. Number Theory 1 (2005), 215-224.
Crossrefs
Cf. A056970.
Programs
-
Maple
series(mul((1+x^(6*k+2))*(1+x^(6*k+4))*(1+x^(6*k+5))/((1-x^(6*k+2))*(1-x^(6*k+4))*(1-x^(6*k+5))), k=0..100), x=0, 100); # second Maple program: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+ `if`(irem(i, 6) in [2, 4, 5], add(2*b(n-i*j, i-1), j=1..n/i), 0))) end: a:= n-> b(n$2): seq(a(n), n=0..60); # Alois P. Heinz, Jan 04 2019
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + If[ MemberQ[{2, 4, 5}, Mod[i, 6]], Sum[2b[n - i j, i-1], {j, 1, n/i}], 0]]]; a[n_] := b[n, n]; a /@ Range[0, 60] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *) nmax = 60; CoefficientList[Series[Product[(1 + x^(6*k+2)) * (1 + x^(6*k+4)) * (1 + x^(6*k+5)) / ((1 - x^(6*k+2)) * (1 - x^(6*k+4)) * (1 - x^(6*k+5))), {k, 0, nmax/6}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
Formula
a(n) ~ Pi^(5/6) * exp(Pi*sqrt(n/2)) / (2^(7/4) * 3^(1/6) * Gamma(1/6) * n^(11/12)). - Vaclav Kotesovec, Jan 14 2021