A253180 Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types that are introduced in ascending order; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 2, 2, 0, 5, 15, 5, 0, 14, 98, 84, 14, 0, 42, 630, 1050, 420, 42, 0, 132, 4092, 11880, 8580, 1980, 132, 0, 429, 27027, 129129, 150150, 60060, 9009, 429, 0, 1430, 181610, 1381380, 2432430, 1501500, 380380, 40040, 1430, 0, 4862, 1239810, 14707550, 37777740, 33795762, 12864852, 2246244, 175032, 4862
Offset: 0
Examples
T(3,1) = 5: ()()(), ()(()), (())(), (()()), ((())). T(3,2) = 15: ()()[], ()[](), ()[][], ()([]), ()[()], ()[[]], (())[], ([])(), ([])[], (()[]), ([]()), ([][]), (([])), ([()]), ([[]]). T(3,3) = 5: ()[]{}, ()[{}], ([]){}, ([]{}), ([{}]). Triangle T(n,k) begins: 1; 0, 1; 0, 2, 2; 0, 5, 15, 5; 0, 14, 98, 84, 14; 0, 42, 630, 1050, 420, 42; 0, 132, 4092, 11880, 8580, 1980, 132; 0, 429, 27027, 129129, 150150, 60060, 9009, 429; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end: A:= proc(n, k) option remember; k^n*ctln(n) end: T:= (n, k)-> add(A(n, k-i)*(-1)^i/((k-i)!*i!), i=0..k): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[0, 0] = 1; T[n_, k_] := Sum[A[n, k-i]*(-1)^i/((k-i)!*i!), {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 11 2017, adapted from Maple *)
Comments