cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253196 Irregular array read by rows. T(n,k) is the number of divisors d of n such that k^2 is the greatest square that divides d, n>=1, 1<=k<=A000188(n).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 0, 1, 4, 2, 4, 2, 2, 4, 4, 2, 2, 0, 1, 2, 4, 0, 2, 2, 4, 2, 4, 4, 2, 4, 4, 2, 0, 0, 0, 1, 4, 2, 0, 2, 4, 2, 2, 8, 2, 2, 2, 0, 2, 4, 4, 4, 4, 2, 2, 0, 0, 1, 2, 4, 4, 4, 4, 2, 8, 2, 4, 2, 4, 0, 2, 4, 2, 4, 4, 0, 2, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 2, 4, 4, 2, 2, 4, 0, 4, 4, 4, 4, 4, 4, 2, 8, 4
Offset: 1

Views

Author

Geoffrey Critzer, Mar 24 2015

Keywords

Comments

Row sums are A000005.
Column 1 is A034444.

Examples

			1
2
2
2,1
2
4
2
2,2
2,0,1
4
2
4,2
2
4
4
2,2,0,1
2
4,0,2
For n=18, The divisors are: 1,2,3,6,9,18.  T(18,1)=4 because 1 is the largest square that divides 1,2,3,6.  T(18,3) = 2 because 9 is the largest square that divides 9,18.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    T:= n-> (p-> seq(coeff(p, x, j), j=1..degree(p)))(add(
        x^mul(i[1]^iquo(i[2], 2), i=ifactors(d)[2]), d=divisors(n))):
    seq(T(n), n=1..70);  # Alois P. Heinz, Mar 25 2015
  • Mathematica
    nn = 60;g[list_] := list /. {j___, 0 ...} -> {j}; f[list_, i_] := list[[i]];Map[g, Transpose[Table[a = Table[If[n == k^2, 1, 0], {n, 1, nn}]; b = Table[2^PrimeNu[n], {n, 1, nn}];Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}], {k,1, nn}]]] // Grid

Formula

Dirichlet g.f. for column k: 1/k^(2*s) * zeta(s)^2/zeta(2*s).