A253197 a(n) = a(n-1) + a(n-2) + (1 - (-1)^(a(n-1) + a(n-2))) with a(0) = 0, a(1) = 1.
0, 1, 3, 4, 9, 15, 24, 41, 67, 108, 177, 287, 464, 753, 1219, 1972, 3193, 5167, 8360, 13529, 21891, 35420, 57313, 92735, 150048, 242785, 392835, 635620, 1028457, 1664079, 2692536, 4356617, 7049155, 11405772, 18454929, 29860703, 48315632, 78176337, 126491971, 204668308, 331160281, 535828591, 866988872
Offset: 0
Examples
For n = 2, a(2) = 0 + 1 + (1 - (-1)^1) = 0 + 1 + 2 = 3. For n = 3, a(3) = 1 + 3 + (1 - (-1)^4) = 1 + 3 + 0 = 4. For n = 4, a(4) = 3 + 4 + (1 - (-1)^7) = 3 + 4 + 2 = 9.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- W. Puszkarz, A Note on Minimal Extensions of the Fibonacci Sequence, viXra:1503.0113, 2015.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,-1,-1).
Programs
-
Magma
[n le 2 select (n-1) else Self(n-1) + Self(n-2) + (1 - (-1)^(Self(n-1) + Self(n-2))): n in [1..50] ]; // Vincenzo Librandi, Mar 28 2015
-
Mathematica
RecurrenceTable[{a[n] == a[n - 1] + a[n - 2] + (1 - (-1)^(a[n - 1] + a[n - 2])), a[0] == 0, a[1] == 1}, a, {n, 0, 50}]
-
PARI
concat(0, Vec(x*(x^3+2*x+1)/((x-1)*(x^2+x-1)*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Mar 28 2015
Formula
a(n) = a(n-1) + a(n-2) + (1 - (-1)^(a(n-1) + a(n-2))), a(0) = 0, a(1) = 1.
a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-4) - a(n-5) for n > 4. - Colin Barker, Mar 28 2015
G.f.: x*(x^3 + 2*x + 1) / ((x-1)*(x^2 + x - 1)*(x^2 + x + 1)). - Colin Barker, Mar 28 2015
a(n) = 2*Fibonacci(n+1) - (1 if n == 0 (mod 3)) - 1. - Nicolas Bělohoubek, Sep 29 2021
Comments