cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253260 Brazilian squares.

Original entry on oeis.org

16, 36, 64, 81, 100, 121, 144, 196, 225, 256, 324, 400, 441, 484, 576, 625, 676, 729, 784, 900, 1024, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1764, 1936, 2025, 2116, 2304, 2401, 2500, 2601, 2704, 2916, 3025, 3136, 3249, 3364, 3600, 3844, 3969, 4096, 4225, 4356, 4624, 4761, 4900, 5184
Offset: 1

Views

Author

Derek Orr, Apr 30 2015

Keywords

Comments

Trivially, all even squares > 4 will be in this sequence.
The only square of a prime which is Brazilian is 121. - Bernard Schott, May 01 2017
Intersection of A000290 and A125134. - Felix Fröhlich, May 01 2017
Conjecture: Let r(n) = (a(n) - 1)/(a(n) + 1); then Product_{n>=1} r(n) = (15/17) * (35/37) * (63/65) * (40/41) * (99/101) * (60/61) * (143/145) * (195/197) * ... = (150 * Pi) / (61 * sinh(Pi)) = 0.668923905.... - Dimitris Valianatos, Feb 27 2019

Examples

			From _Bernard Schott_, May 01 2017: (Start)
a(1) = 16 = 4^2 = 22_7.
a(6) = 121 = 11^2 = 11111_3. (End)
		

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Module[{b=2, found=False}, While[b1, b++]; bVincenzo Librandi, May 02 2017 *)
  • PARI
    for(n=4, 10^4, for(b=2, n-2, d=digits(n, b); if(vecmin(d)==vecmax(d)&&issquare(n), print1(n, ", "); break)))