cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253265 The number of tilings of 2 X n boards with squares of 2 colors and dominoes of 3 colors.

Original entry on oeis.org

1, 7, 82, 877, 9565, 103960, 1130701, 12296275, 133724242, 1454268793, 15815379409, 171994465072, 1870463946217, 20341557798991, 221217294787570, 2405769114915733, 26163076626035413, 284527128680078536, 3094272440210485525, 33650646877362841531, 365955505581792121138
Offset: 0

Views

Author

R. J. Mathar, Sep 30 2015

Keywords

Comments

The numerator in Formula (3) in the JIS article should be 1-b*x, not 1-x.

Crossrefs

Cf. A030186 (pieces of a single color), A102436.

Programs

  • GAP
    a:=[1,7,82];; for n in [4..30] do a[n]:=10*a[n-1]+12*a[n-2] -27*a[n-3]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x)/(1-10*x-12*x^2+27*x^3) )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(coeff(series((1-3*x)/(1-10*x-12*x^2+27*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019
  • Mathematica
    CoefficientList[Series[(1-3x)/(1-10x-12x^2+27x^3), {x, 0, 20}], x] (* Michael De Vlieger, Sep 30 2015 *)
    LinearRecurrence[{10,12,-27},{1,7,82},30] (* Harvey P. Dale, Dec 30 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-3*x)/(1-10*x-12*x^2+27*x^3)) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A253265_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-3*x)/(1-10*x-12*x^2+27*x^3)).list()
    A253265_list(30) # G. C. Greubel, Oct 28 2019
    

Formula

G.f.: ( 1-3*x ) / ( 1 - 10*x - 12*x^2 + 27*x^3 ).