cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253270 Decimal expansion of a constant related to A253268.

Original entry on oeis.org

1, 1, 1, 8, 8, 6, 7, 4, 4, 3, 8, 6, 1, 7, 7, 8, 9, 5, 0, 1, 7, 3, 5, 3, 5, 5, 6, 9, 0, 5, 5, 7, 7, 1, 1, 0, 0, 5, 4, 9, 2, 6, 7, 2, 6, 4, 2, 4, 2, 2, 2, 3, 7, 4, 2, 8, 1, 5, 7, 1, 2, 2, 5, 3, 1, 3, 1, 8, 0, 1, 4, 3, 2, 9, 5, 7, 3, 2, 0, 6, 6, 5, 0, 3, 9, 0, 6, 7, 0, 8, 9, 6, 4, 8, 3, 0, 6, 8, 3, 0, 1, 1, 6, 6, 6
Offset: 1

Views

Author

Vaclav Kotesovec, May 01 2015

Keywords

Examples

			1.1188674438617789501735355690557711005492672642422237428157122531318...
		

Crossrefs

Programs

  • Mathematica
    (* Iterations: *) Do[Print[N[Product[Fibonacci[k]^k,{k,1,n}] / (GoldenRatio^(n*(n+1)*(2*n+1)/6) / 5^(n*(n+1)/4)),120]],{n,100,1000,100}]

Formula

Equals limit n->infinity A253268(n) / (((1+sqrt(5))/2)^(n*(n+1)*(2*n+1)/6) / 5^(n*(n+1)/4)).

A062381 Let A_n be the n X n matrix defined by A_n[i,j] = 1/F(i+j-1) for 1<=i,j<=n where F(k) is the k-th Fibonacci number (A000045). Then a_n = 1/det(A_n).

Original entry on oeis.org

1, -2, -360, 16848000, 1897448716800000, -3129723891582775706419200000, -541942196790147039091108680776954796441600000, 66373536294235576434745706427960099542896427384297349714149376000000
Offset: 1

Views

Author

Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 08 2001

Keywords

Comments

In the reference it is proved that not only det(A_n) is a reciprocal of an integer but the inverse matrix (A_n)^(-1) is an integer matrix.

Examples

			a(3) = -360 because the matrix is / 1,1,1/2 / 1,1/2, 1/3 / 1/2, 1/3, 1/5 / with determinant -1/360.
		

Crossrefs

Programs

  • Mathematica
    Table[(-1)^Floor[n/2]*Product[Fibonacci[k]^(n-Abs[k-n]),{k,1,2*n-1}],{n,1,10}]/Table[Product[Product[Fibonacci[k],{k,1,m-1}],{m,1,n}],{n,1,10}]^2 (* Alexander Adamchuk, May 18 2006 *)
  • PARI
    vector(8, n, 1/matdet(matrix(n, n, i, j, 1/fibonacci(i+j-1)))) \\ Colin Barker, May 01 2015

Formula

a(n) = s(n) * f(n) / h(n)^2, where s(n) = (-1)^Floor[n/2], f(n) = Product[Fibonacci[k]^(n-Abs[k-n]),{k,1,2*n-1}], h(n) = Product[Product[Fibonacci[k],{k,1,m-1}],{m,1,n}]. - Alexander Adamchuk, May 18 2006
a(n) ~ (-1)^floor(n/2) * A253270 * ((1+sqrt(5))/2)^(n*(2*n^2+1)/3) / (A253267^2 * 5^(n/2) * A062073^(2*n-2)). - Vaclav Kotesovec, May 01 2015

Extensions

More terms from Vladeta Jovovic, Jul 11 2001
Showing 1-2 of 2 results.