cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253273 Triangle T(n,k) = Sum_{j=0..n-k+1} binomial(k+j,k-j+1)*binomial(n-k,j-1), read by rows.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 12, 14, 5, 1, 6, 18, 30, 25, 6, 1, 7, 25, 53, 66, 41, 7, 1, 8, 33, 84, 136, 132, 63, 8, 1, 9, 42, 124, 244, 315, 245, 92, 9, 1, 10, 52, 174, 400, 636, 673, 428, 129, 10, 1, 11, 63, 235, 615, 1152, 1522, 1346, 711, 175, 11
Offset: 0

Views

Author

Vladimir Kruchinin, May 01 2015

Keywords

Examples

			The triangle begins as:
  1;
  1,  2;
  1,  3,  3;
  1,  4,  7,   4;
  1,  5, 12,  14,   5;
  1,  6, 18,  30,  25,   6;
  1,  7, 25,  53,  66,  41,   7;
  1,  8, 33,  84, 136, 132,  63,   8;
  1,  9, 42, 124, 244, 315, 245,  92,   9;
  1, 10, 52, 174, 400, 636, 673, 428, 129, 10;
  ...
		

Crossrefs

Cf. A095263.

Programs

  • Magma
    T:= func< n,k | (&+[Binomial(k+j,k-j+1)*Binomial(n-k,j-1): j in [0..n-k+1]]) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
    
  • Mathematica
    T[n_, k_]:= Sum[Binomial[k+j,k-j+1]*Binomial[n-k,j-1], {j,0,n-k+1}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 17 2021 *)
  • Maxima
    T(n,m):=sum(binomial(m+k,m-k+1)*binomial(n-m,k-1),k,0,n-m+1);
    
  • Sage
    def T(n,k): return sum(binomial(k+j,k-j+1)*binomial(n-k,j-1) for j in (0..n-k+1))
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021

Formula

T(n,k) = Sum_{j=0..n-k+1} binomial(k+j,k-j+1)*binomial(n-k,j-1).
Sum_{k=0..n} T(n,k) = A095263(n+1).
G.f.: 1/( (1-x)*(1+y^2) - (2-x)*y ).