A253273 Triangle T(n,k) = Sum_{j=0..n-k+1} binomial(k+j,k-j+1)*binomial(n-k,j-1), read by rows.
1, 1, 2, 1, 3, 3, 1, 4, 7, 4, 1, 5, 12, 14, 5, 1, 6, 18, 30, 25, 6, 1, 7, 25, 53, 66, 41, 7, 1, 8, 33, 84, 136, 132, 63, 8, 1, 9, 42, 124, 244, 315, 245, 92, 9, 1, 10, 52, 174, 400, 636, 673, 428, 129, 10, 1, 11, 63, 235, 615, 1152, 1522, 1346, 711, 175, 11
Offset: 0
Examples
The triangle begins as: 1; 1, 2; 1, 3, 3; 1, 4, 7, 4; 1, 5, 12, 14, 5; 1, 6, 18, 30, 25, 6; 1, 7, 25, 53, 66, 41, 7; 1, 8, 33, 84, 136, 132, 63, 8; 1, 9, 42, 124, 244, 315, 245, 92, 9; 1, 10, 52, 174, 400, 636, 673, 428, 129, 10; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A095263.
Programs
-
Magma
T:= func< n,k | (&+[Binomial(k+j,k-j+1)*Binomial(n-k,j-1): j in [0..n-k+1]]) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 17 2021
-
Mathematica
T[n_, k_]:= Sum[Binomial[k+j,k-j+1]*Binomial[n-k,j-1], {j,0,n-k+1}]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 17 2021 *)
-
Maxima
T(n,m):=sum(binomial(m+k,m-k+1)*binomial(n-m,k-1),k,0,n-m+1);
-
Sage
def T(n,k): return sum(binomial(k+j,k-j+1)*binomial(n-k,j-1) for j in (0..n-k+1)) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 17 2021
Formula
T(n,k) = Sum_{j=0..n-k+1} binomial(k+j,k-j+1)*binomial(n-k,j-1).
Sum_{k=0..n} T(n,k) = A095263(n+1).
G.f.: 1/( (1-x)*(1+y^2) - (2-x)*y ).