A253284 Triangle read by rows, T(n,k) = (k+1)*(n+1)!*(n+k)!/((k+1)!^2*(n-k)!) with n >= 0 and 0 <= k <= n.
1, 2, 2, 6, 18, 12, 24, 144, 240, 120, 120, 1200, 3600, 4200, 1680, 720, 10800, 50400, 100800, 90720, 30240, 5040, 105840, 705600, 2116800, 3175200, 2328480, 665280, 40320, 1128960, 10160640, 42336000, 93139200, 111767040, 69189120, 17297280
Offset: 0
Examples
Triangle begins: 1; 2, 2; 6, 18, 12; 24, 144, 240, 120; 120, 1200, 3600, 4200, 1680; 720, 10800, 50400, 100800, 90720, 30240; 5040, 105840, 705600, 2116800, 3175200, 2328480, 665280.
Programs
-
Magma
/* As triangle: */ [[(k + 1)*Factorial(n + 1)*Factorial(n + k)/(Factorial(k + 1)^2*Factorial(n - k)): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 23 2015
-
Maple
T := (n,k) -> ((k+1)*(n+1)!*(n+k)!)/((k+1)!^2*(n-k)!); for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
Mathematica
f[n_] := Rest@ Flatten@ Reap@ Block[{i, k, t}, For[i = 0, i <= n, i++, For[k = 0, k <= i, k++, Sow[(i + 1)!*Binomial[i + k, i]*Binomial[i, k]/(k + 1)]]]]; f@ 7 (* Michael De Vlieger, Mar 23 2015 *)
-
PARI
tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n+k,n)*binomial(n,k)/(k+1), ", ");); print(););} \\ Michel Marcus, Mar 23 2015
Comments