cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253285 a(n) = RF(n+1,3)*C(n+2,n-1), where RF(a,n) is the rising factorial.

Original entry on oeis.org

0, 24, 240, 1200, 4200, 11760, 28224, 60480, 118800, 217800, 377520, 624624, 993720, 1528800, 2284800, 3329280, 4744224, 6627960, 9097200, 12289200, 16364040, 21507024, 27931200, 35880000, 45630000, 57493800, 71823024, 89011440, 109498200, 133771200, 162370560
Offset: 0

Views

Author

Peter Luschny, Mar 23 2015

Keywords

Crossrefs

Programs

  • GAP
    List([0..40], n -> n*((n+1)*(n+2))^2*(n+3)/6); # Bruno Berselli, Mar 06 2018
    
  • Magma
    [n*((n+1)*(n+2))^2*(n+3)/6: n in [0..40]]; // Bruno Berselli, Mar 06 2018
    
  • Maple
    seq(n*((n+1)*(n+2))^2*(n+3)/6,n=0..19);
  • Mathematica
    Table[n ((n + 1) (n + 2))^2 (n + 3)/6, {n, 0, 40}] (* Bruno Berselli, Mar 06 2018 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,24,240,1200,4200,11760,28224},40] (* Harvey P. Dale, Aug 05 2024 *)
  • Python
    [n*((n+1)*(n+2))**2*(n+3)/6 for n in range(40)] # Bruno Berselli, Mar 06 2018
  • Sage
    [n*((n+1)*(n+2))^2*(n+3)/6 for n in (0..40)] # Bruno Berselli, Mar 06 2018
    

Formula

G.f.: -24/(x-1)^4 - 144/(x-1)^5 - 240/(x-1)^6 - 120/(x-1)^7. See the comment in A253284 for the general case.
a(n) = n*((n+1)*(n+2))^2*(n+3)/6.
a(n) = (N^3 + 4*N^2 + 4*N)/6 = N*(N + 2)^2/6 with N = n^2 + 3*n.
From Bruno Berselli, Mar 06 2018: (Start)
a(n) = 24*A006542(n+3) for n>0.
a(n) = Sum_{i=0..n} i*(i+1)^3*(i+2). Therefore, the first differences are in A133754. (End)