cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253298 Digital root for the following sequences, F(4*n)/F(4); F(12*n)/F(12); F(20*n)/F(20), where the pattern increases by 8, ad infinitum, with the Fibonacci numbers F = A000045.

Original entry on oeis.org

1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9, 1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9, 1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9, 1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9
Offset: 1

Views

Author

Peter M. Chema, Dec 30 2014

Keywords

Comments

Cyclical and palindromic in two parts with periodicity 18: {1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8, 9}.
Digital root of the period is 9, its mean and median is 5, and its product is (9!)^2.
See A253368 for the initial motivation for this sequence.
From Peter M. Chema, Jul 04 2016: (Start)
A composite of three respective digital root sequences in alternation: a "halving sequence" of 1, 5, 7, 8, 4, 2, a "doubling sequence" of 7, 5, 1, 2, 4, 8, and a three-six-nine circuit of 3, 3, 9, 6, 6, 9.
Also the digital root of A000045(4n)/3 or A004187(n). In general terms, sequences defined by Fib(x*n)/ Fib(x) where x=(8*a-4) all share the same digital root (e.g., F(4*n)/F(4); F(12*n)/F(12); F(20*n)/F(20); F(28*n)/F(28); F(36*n)/F(36), etc.) (End)

Crossrefs

Programs

  • Mathematica
    f[n_] := Mod[ Fibonacci[ 12n]/144, 9]; Array[f, 5*18] (* Robert G. Wilson v, Jan 23 2015 *)
    LinearRecurrence[{1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1},{1, 7, 3, 5, 5, 3, 7, 1, 9, 8, 2, 6, 4, 4, 6, 2, 8},72] (* Ray Chandler, Aug 12 2015 *)

Formula

a(n) = A010888(A253368(n)).
G.f.: x*(1 + 7*x + 3*x^2 + 5*x^3 + 5*x^4 + 3*x^5 + 7*x^6 + x^7 + 9*x^8 + 8*x^9 + 2*x^10 + 6*x^11 + 4*x^12 + 4*x^13 + 6*x^14 + 2*x^15 + 8*x^16 + 9*x^17)/(1 - x^18). - Vincenzo Librandi, Mar 28 2016

Extensions

Edited. Numbers and name changed to fit A253368. Formula adapted. Cross reference added. - Wolfdieter Lang, Jan 28 2015
Name generalized by Peter M. Chema, Jul 04 2016