A253473 a(n) = phi(c(n)) - tau(phi(c(n))), where c(n) is the n-th composite number.
0, 0, 1, 2, 1, 1, 2, 4, 4, 2, 4, 6, 6, 4, 14, 6, 12, 6, 4, 11, 14, 11, 16, 6, 12, 16, 11, 6, 14, 16, 18, 11, 34, 14, 26, 16, 12, 32, 16, 27, 22, 11, 22, 27, 26, 38, 14, 26, 38, 16, 16, 27, 32, 27, 48, 16, 26, 46, 32, 16, 57, 34, 48, 32, 16, 60, 38, 48, 42, 60
Offset: 1
Examples
For n=1: c(1) = 4. phi(4) = 2. tau(2)= 2, thus a(1) = 2 - 2 = 0. For n=3: c(3) = 8. phi(8) = 4. tau(4)= 3, thus a(3) = 4 - 3 = 1. For n=20: c(20) = 32. phi(32) = 16. tau(16) = 5, thus a(20) = 16 - 5 = 11.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- J. Ziegenbalg, Phi, Tau, Sigma in Elementary Number Theory
Programs
-
Maple
comps:= remove(isprime, [$2..1000]): map( ((t->t) - numtheory:-tau)@numtheory:-phi, comps); # Robert Israel, Nov 20 2016
-
Mathematica
Composites := Select[Range[2, 10000], ! PrimeQ[#] &]; Composite[n_] := Last[Take[Composites, n]]; T[n_] := EulerPhi[n]; Table[T[Composite[n]] - DivisorSigma[0, T[Composite[n]]], {n, 200}] EulerPhi[#]-DivisorSigma[0,EulerPhi[#]]&/@Select[Range[300],CompositeQ] (* Harvey P. Dale, Oct 05 2019 *)
-
PARI
lista(nn) = {forcomposite(n=1, nn, ec = eulerphi(n); print1(ec - numdiv(ec), ", "););} \\ Michel Marcus, Jan 11 2015
Formula
Extensions
Name clarified by Omar E. Pol, Nov 20 2016